Loading…

Exceeding 100 µs Charge Carrier Separation in Perovskite Mediated by Rhodamine 6G

Halide perovskite colloidal nanocrystals (NCs) have enabled considerable progress in light conversion applications. However, the presence of unavoidable defect states and phase transition effects can accelerate undesirable rapid charge recombination of the photogenerated charge carriers. To address...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2024-03, Vol.12 (8), p.n/a
Main Authors: Maity, Partha, Naphade, Rounak, Gutiérrez‐Arzaluz, Luis, Nematulloev, Sarvarkhodzha, Thomas, Simil, Mir, Wasim J., Yorov, Khursand E., Alshareef, Husam N., Bakr, Osman M., Mohammed, Omar F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Halide perovskite colloidal nanocrystals (NCs) have enabled considerable progress in light conversion applications. However, the presence of unavoidable defect states and phase transition effects can accelerate undesirable rapid charge recombination of the photogenerated charge carriers. To address this issue, chromophores with an anchoring moiety are often used to modify the surface of the NCs, promoting prolonged charge separation through electron or energy transfer processes for optoelectronic applications. Here, steady‐state and time‐resolved spectroscopy methods are combined with density functional theory (DFT) calculations to explore and decipher the excited‐state interaction in colloidal CsPbX3 (X = Br, I) NCs with a rhodamine 6G (Rh6G) hybrid assembly. The results show that Rh6G dimerizes even at low concentrations, as evidenced by DFT calculations. The binding of Rh6G on the NC surface is confirmed by FTIR and NMR spectroscopy techniques. In addition, transient absorption spectroscopy reveals directional sub‐ps electron transfer from Rh6G to CsPbI3 NCs, whereas energy transfer occurs from CsPbBr3 to Rh6G, which ultimately recombines in the µs time regime. The findings highlight the simplest and most practical approaches for studying and tailoring the excited‐state interaction in colloidal perovskite NCs and chromophore assembly. Charge transfer processes, namely, energy and electron transfer, permit the utilization of excited states within light‐harvesting assemblies for light‐driven applications. In this scenario, efficient charge separation and slow recombination are desirable to obtain better performance. The assembly of metal halide perovskite (CsPbBr3 and CsPbI3 nanocrystals) and rhodamine 6G is revealed here to be a useful strategy to acquire long‐lived carriers.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202300941