Loading…
Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk
We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varph...
Saved in:
Published in: | Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.3893-3902 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the general polynomial differentiation composition operator
Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varphi}_j(z)\right), $$
where
n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$,
ψj$$ {\psi}_j $$,
j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic functions on the open unit disk
D and
φj$$ {\varphi}_j $$,
j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic self‐maps of
D, calculate norm of the operator acting from the space of Cauchy transforms to the
m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little
m$$ m $$th weighted‐type space. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9681 |