Loading…

Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk

We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varph...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.3893-3902
Main Author: Stević, Stevo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varphi}_j(z)\right), $$ where n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$, ψj$$ {\psi}_j $$, j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic functions on the open unit disk D and φj$$ {\varphi}_j $$, j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic self‐maps of D, calculate norm of the operator acting from the space of Cauchy transforms to the m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little m$$ m $$th weighted‐type space.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9681