Loading…

Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk

We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varph...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.3893-3902
Main Author: Stević, Stevo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3902
container_issue 6
container_start_page 3893
container_title Mathematical methods in the applied sciences
container_volume 47
creator Stević, Stevo
description We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varphi}_j(z)\right), $$ where n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$, ψj$$ {\psi}_j $$, j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic functions on the open unit disk D and φj$$ {\varphi}_j $$, j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic self‐maps of D, calculate norm of the operator acting from the space of Cauchy transforms to the m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little m$$ m $$th weighted‐type space.
doi_str_mv 10.1002/mma.9681
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2964561585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2964561585</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8QiWOKd43TSNj1XFn9TCBc6Rk6wblyQOtqMqNx6BK6_Hk5CkiNPM4dsZ7RByDWwGjPHbqpIzEcVwQibAhAggXEanZMJgyYKQQ3hOLpzbM8ZiAD4h38_GVtQo6gukO6zRypI2puxqU-ne5loptFh7Lb02Nc1M1RinR2-anvbGUmVNNQa4RmY4pK1lmxUd9VbWTvUNjnozEpUv6AH1rvCY_3x--a75v6pHoK2171vd-yU5U7J0ePWnU_J2f_e6fgw2Lw9P69UmaDgHCHgqUoFKZHMOKcsgy5kKBUrMU-ApxlGKIZPLKMM0FwJQRQqlyEX_f8ZARPMpuTnmNtZ8tOh8sjetrfvKhIsoXESwiBc9FRypgy6xSxqrK2m7BFgyrJ70qyfD6sl2uxp0_gubXnwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2964561585</pqid></control><display><type>article</type><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Stević, Stevo</creator><creatorcontrib>Stević, Stevo</creatorcontrib><description><![CDATA[We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&amp;#x0005E;nf(z)&amp;#x0003D;\sum \limits_{j&amp;#x0003D;0}&amp;#x0005E;n{\psi}_j(z){f}&amp;#x0005E;{(j)}\left({\varphi}_j(z)\right), $$ where n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$, ψj$$ {\psi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk D and φj$$ {\varphi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic self‐maps of D, calculate norm of the operator acting from the space of Cauchy transforms to the m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little m$$ m $$th weighted‐type space.]]></description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9681</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; bounded operator ; Composition ; Differentiation ; m$$ m $$th weighted‐type space ; Mathematical analysis ; operator norm ; polynomial differentiation composition operator ; Polynomials ; space of Cauchy transforms</subject><ispartof>Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.3893-3902</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7202-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Stević, Stevo</creatorcontrib><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><title>Mathematical methods in the applied sciences</title><description><![CDATA[We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&amp;#x0005E;nf(z)&amp;#x0003D;\sum \limits_{j&amp;#x0003D;0}&amp;#x0005E;n{\psi}_j(z){f}&amp;#x0005E;{(j)}\left({\varphi}_j(z)\right), $$ where n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$, ψj$$ {\psi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk D and φj$$ {\varphi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic self‐maps of D, calculate norm of the operator acting from the space of Cauchy transforms to the m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little m$$ m $$th weighted‐type space.]]></description><subject>Analytic functions</subject><subject>bounded operator</subject><subject>Composition</subject><subject>Differentiation</subject><subject>m$$ m $$th weighted‐type space</subject><subject>Mathematical analysis</subject><subject>operator norm</subject><subject>polynomial differentiation composition operator</subject><subject>Polynomials</subject><subject>space of Cauchy transforms</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8QiWOKd43TSNj1XFn9TCBc6Rk6wblyQOtqMqNx6BK6_Hk5CkiNPM4dsZ7RByDWwGjPHbqpIzEcVwQibAhAggXEanZMJgyYKQQ3hOLpzbM8ZiAD4h38_GVtQo6gukO6zRypI2puxqU-ne5loptFh7Lb02Nc1M1RinR2-anvbGUmVNNQa4RmY4pK1lmxUd9VbWTvUNjnozEpUv6AH1rvCY_3x--a75v6pHoK2171vd-yU5U7J0ePWnU_J2f_e6fgw2Lw9P69UmaDgHCHgqUoFKZHMOKcsgy5kKBUrMU-ApxlGKIZPLKMM0FwJQRQqlyEX_f8ZARPMpuTnmNtZ8tOh8sjetrfvKhIsoXESwiBc9FRypgy6xSxqrK2m7BFgyrJ70qyfD6sl2uxp0_gubXnwo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Stević, Stevo</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></search><sort><creationdate>202404</creationdate><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><author>Stević, Stevo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>bounded operator</topic><topic>Composition</topic><topic>Differentiation</topic><topic>m$$ m $$th weighted‐type space</topic><topic>Mathematical analysis</topic><topic>operator norm</topic><topic>polynomial differentiation composition operator</topic><topic>Polynomials</topic><topic>space of Cauchy transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stević, Stevo</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stević, Stevo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>3893</spage><epage>3902</epage><pages>3893-3902</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract><![CDATA[We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&amp;#x0005E;nf(z)&amp;#x0003D;\sum \limits_{j&amp;#x0003D;0}&amp;#x0005E;n{\psi}_j(z){f}&amp;#x0005E;{(j)}\left({\varphi}_j(z)\right), $$ where n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$, ψj$$ {\psi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk D and φj$$ {\varphi}_j $$, j=0,n ̅$$ j&amp;#x0003D;\overline{0,n} $$, are holomorphic self‐maps of D, calculate norm of the operator acting from the space of Cauchy transforms to the m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little m$$ m $$th weighted‐type space.]]></abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9681</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.3893-3902
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2964561585
source Wiley-Blackwell Read & Publish Collection
subjects Analytic functions
bounded operator
Composition
Differentiation
m$$ m $$th weighted‐type space
Mathematical analysis
operator norm
polynomial differentiation composition operator
Polynomials
space of Cauchy transforms
title Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norm%20of%20the%20general%20polynomial%20differentiation%20composition%20operator%20from%20the%20space%20of%20Cauchy%20transforms%20to%20the%20mth%20weighted%E2%80%90type%20space%20on%20the%20unit%20disk&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Stevi%C4%87,%20Stevo&rft.date=2024-04&rft.volume=47&rft.issue=6&rft.spage=3893&rft.epage=3902&rft.pages=3893-3902&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9681&rft_dat=%3Cproquest_wiley%3E2964561585%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2964561585&rft_id=info:pmid/&rfr_iscdi=true