Loading…
Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk
We introduce the general polynomial differentiation composition operator Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varph...
Saved in:
Published in: | Mathematical methods in the applied sciences 2024-04, Vol.47 (6), p.3893-3902 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3902 |
container_issue | 6 |
container_start_page | 3893 |
container_title | Mathematical methods in the applied sciences |
container_volume | 47 |
creator | Stević, Stevo |
description | We introduce the general polynomial differentiation composition operator
Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}^nf(z)=\sum \limits_{j=0}^n{\psi}_j(z){f}^{(j)}\left({\varphi}_j(z)\right), $$
where
n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$,
ψj$$ {\psi}_j $$,
j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic functions on the open unit disk
D and
φj$$ {\varphi}_j $$,
j=0,n ̅$$ j=\overline{0,n} $$, are holomorphic self‐maps of
D, calculate norm of the operator acting from the space of Cauchy transforms to the
m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little
m$$ m $$th weighted‐type space. |
doi_str_mv | 10.1002/mma.9681 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2964561585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2964561585</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqUg8QiWOKd43TSNj1XFn9TCBc6Rk6wblyQOtqMqNx6BK6_Hk5CkiNPM4dsZ7RByDWwGjPHbqpIzEcVwQibAhAggXEanZMJgyYKQQ3hOLpzbM8ZiAD4h38_GVtQo6gukO6zRypI2puxqU-ne5loptFh7Lb02Nc1M1RinR2-anvbGUmVNNQa4RmY4pK1lmxUd9VbWTvUNjnozEpUv6AH1rvCY_3x--a75v6pHoK2171vd-yU5U7J0ePWnU_J2f_e6fgw2Lw9P69UmaDgHCHgqUoFKZHMOKcsgy5kKBUrMU-ApxlGKIZPLKMM0FwJQRQqlyEX_f8ZARPMpuTnmNtZ8tOh8sjetrfvKhIsoXESwiBc9FRypgy6xSxqrK2m7BFgyrJ70qyfD6sl2uxp0_gubXnwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2964561585</pqid></control><display><type>article</type><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Stević, Stevo</creator><creatorcontrib>Stević, Stevo</creatorcontrib><description><![CDATA[We introduce the general polynomial differentiation composition operator
Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&#x0005E;nf(z)&#x0003D;\sum \limits_{j&#x0003D;0}&#x0005E;n{\psi}_j(z){f}&#x0005E;{(j)}\left({\varphi}_j(z)\right), $$
where
n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$,
ψj$$ {\psi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk
D and
φj$$ {\varphi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic self‐maps of
D, calculate norm of the operator acting from the space of Cauchy transforms to the
m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little
m$$ m $$th weighted‐type space.]]></description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9681</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Analytic functions ; bounded operator ; Composition ; Differentiation ; m$$ m $$th weighted‐type space ; Mathematical analysis ; operator norm ; polynomial differentiation composition operator ; Polynomials ; space of Cauchy transforms</subject><ispartof>Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.3893-3902</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7202-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Stević, Stevo</creatorcontrib><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><title>Mathematical methods in the applied sciences</title><description><![CDATA[We introduce the general polynomial differentiation composition operator
Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&#x0005E;nf(z)&#x0003D;\sum \limits_{j&#x0003D;0}&#x0005E;n{\psi}_j(z){f}&#x0005E;{(j)}\left({\varphi}_j(z)\right), $$
where
n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$,
ψj$$ {\psi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk
D and
φj$$ {\varphi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic self‐maps of
D, calculate norm of the operator acting from the space of Cauchy transforms to the
m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little
m$$ m $$th weighted‐type space.]]></description><subject>Analytic functions</subject><subject>bounded operator</subject><subject>Composition</subject><subject>Differentiation</subject><subject>m$$ m $$th weighted‐type space</subject><subject>Mathematical analysis</subject><subject>operator norm</subject><subject>polynomial differentiation composition operator</subject><subject>Polynomials</subject><subject>space of Cauchy transforms</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqUg8QiWOKd43TSNj1XFn9TCBc6Rk6wblyQOtqMqNx6BK6_Hk5CkiNPM4dsZ7RByDWwGjPHbqpIzEcVwQibAhAggXEanZMJgyYKQQ3hOLpzbM8ZiAD4h38_GVtQo6gukO6zRypI2puxqU-ne5loptFh7Lb02Nc1M1RinR2-anvbGUmVNNQa4RmY4pK1lmxUd9VbWTvUNjnozEpUv6AH1rvCY_3x--a75v6pHoK2171vd-yU5U7J0ePWnU_J2f_e6fgw2Lw9P69UmaDgHCHgqUoFKZHMOKcsgy5kKBUrMU-ApxlGKIZPLKMM0FwJQRQqlyEX_f8ZARPMpuTnmNtZ8tOh8sjetrfvKhIsoXESwiBc9FRypgy6xSxqrK2m7BFgyrJ70qyfD6sl2uxp0_gubXnwo</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Stević, Stevo</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></search><sort><creationdate>202404</creationdate><title>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</title><author>Stević, Stevo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>bounded operator</topic><topic>Composition</topic><topic>Differentiation</topic><topic>m$$ m $$th weighted‐type space</topic><topic>Mathematical analysis</topic><topic>operator norm</topic><topic>polynomial differentiation composition operator</topic><topic>Polynomials</topic><topic>space of Cauchy transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stević, Stevo</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stević, Stevo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-04</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>3893</spage><epage>3902</epage><pages>3893-3902</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract><![CDATA[We introduce the general polynomial differentiation composition operator
Tφ→,ψ→nf(z)=∑j=0nψj(z)f(j)φj(z),$$ {T}_{\overrightarrow{\varphi},\overrightarrow{\psi}}&#x0005E;nf(z)&#x0003D;\sum \limits_{j&#x0003D;0}&#x0005E;n{\psi}_j(z){f}&#x0005E;{(j)}\left({\varphi}_j(z)\right), $$
where
n∈N0$$ n\in {\mathrm{\mathbb{N}}}_0 $$,
ψj$$ {\psi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic functions on the open unit disk
D and
φj$$ {\varphi}_j $$,
j=0,n ̅$$ j&#x0003D;\overline{0,n} $$, are holomorphic self‐maps of
D, calculate norm of the operator acting from the space of Cauchy transforms to the
m$$ m $$th weighted‐type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little
m$$ m $$th weighted‐type space.]]></abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9681</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7202-9764</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2024-04, Vol.47 (6), p.3893-3902 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2964561585 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analytic functions bounded operator Composition Differentiation m$$ m $$th weighted‐type space Mathematical analysis operator norm polynomial differentiation composition operator Polynomials space of Cauchy transforms |
title | Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted‐type space on the unit disk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norm%20of%20the%20general%20polynomial%20differentiation%20composition%20operator%20from%20the%20space%20of%20Cauchy%20transforms%20to%20the%20mth%20weighted%E2%80%90type%20space%20on%20the%20unit%20disk&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Stevi%C4%87,%20Stevo&rft.date=2024-04&rft.volume=47&rft.issue=6&rft.spage=3893&rft.epage=3902&rft.pages=3893-3902&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9681&rft_dat=%3Cproquest_wiley%3E2964561585%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2211-2b9b9ef9c321b0c1cd0f49eaedb12be86be40a76cebd991ef6fea9d9081c01963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2964561585&rft_id=info:pmid/&rfr_iscdi=true |