Loading…
Counting orientations of random graphs with no directed k‐cycles
For every k⩾3$$ k\geqslant 3 $$, we determine the order of growth, up to polylogarithmic factors, of the number of orientations of the binomial random graph containing no directed cycle of length k$$ k $$. This solves a conjecture of Kohayakawa, Morris and the last two authors.
Saved in:
Published in: | Random structures & algorithms 2024-05, Vol.64 (3), p.676-691 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For every k⩾3$$ k\geqslant 3 $$, we determine the order of growth, up to polylogarithmic factors, of the number of orientations of the binomial random graph containing no directed cycle of length k$$ k $$. This solves a conjecture of Kohayakawa, Morris and the last two authors. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.21196 |