Loading…
Bioinspired mineral-in-shell nanoarchitectonics: Functional empowerment of mineral precursors for guiding intradentinal mineralization
Effective mineralization of biological structures poses a significant challenge in hard tissue engineering as it necessitates overcoming geometric complexities and multistep biomineralization processes. In this regard, we propose “mineral-in-shell nanoarchitectonics”, inspired by the nanostructure o...
Saved in:
Published in: | Nano research 2024-05, Vol.17 (5), p.4338-4349 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Effective mineralization of biological structures poses a significant challenge in hard tissue engineering as it necessitates overcoming geometric complexities and multistep biomineralization processes. In this regard, we propose “mineral-in-shell nanoarchitectonics”, inspired by the nanostructure of matrix vesicles, which can influence multiple mineralization pathways. Our nanostructural design empowers mineral precursors with tailorable properties through encapsulating amorphous calcium phosphate within a multifunctional tannic acid (TA) and silk fibroin (SF) nanoshell. The bioinspired nanosystem facilitates efficient recruitment of mineral precursors throughout the dentin structures, followed by large-scale intradentinal mineralization both
in vitro
and
in vivo
, which provides persistent protection against external stimuli. Theoretical simulations combined with experimental studies attribute the success of intradentinal mineralization to the TA-SF nanoshell, which exhibits a strong affinity for the dentin structure, stabilizing amorphous precursors and thereby facilitating concomitant mineral formation. Overall, this bioinspired mineral-in-shell nanoarchitectonics shows a promising prospect for hard tissue repair and serves as a blueprint for next-generation biomineralization-associated materials. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-023-6336-0 |