Loading…
A Tight Subexponential-time Algorithm for Two-Page Book Embedding
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into pages, which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to c...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into pages, which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^(O(\sqrt{n})) algorithm for computing a book embedding of an n-vertex graph on two pages -- a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem. |
---|---|
ISSN: | 2331-8422 |