Loading…

A deformable convolutional time-series prediction network with extreme peak and interval calibration

Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals usin...

Full description

Saved in:
Bibliographic Details
Published in:GeoInformatica 2024-04, Vol.28 (2), p.291-312
Main Authors: Bi, Xin, Zhang, Guoliang, Lu, Lijun, Yuan, George Y, Zhao, Xiangguo, Sun, Yongjiao, Ma, Yuliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals using deep learning models poses three challenges, namely, sparse features, conservative prediction of extreme peaks, and varying periodic intervals. We address these issues by proposing a prediction framework called EPIC with extreme peak and interval calibrations. EPIC consists of a triple-channel prediction network and a calibration network. The prediction network learns the time-domain, frequency-domain, and deformable features of time-series patterns simultaneously. Amplitude residuals of extreme peaks are emphasized in the designed training loss function. In addition, to alleviate the problem of unaligned predictions resulting from inaccurate periodic intervals, we further design a calibration module to reduce the deviation of periodic intervals. The experimental results and ablation studies indicate that EPIC achieves excellent performance in long-term prediction tasks.
ISSN:1384-6175
1573-7624
DOI:10.1007/s10707-023-00502-8