Loading…
A deformable convolutional time-series prediction network with extreme peak and interval calibration
Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals usin...
Saved in:
Published in: | GeoInformatica 2024-04, Vol.28 (2), p.291-312 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-cfb126b53396fe6c18a1998c0160b0478af06d227f0d9584725e8162f4693a283 |
container_end_page | 312 |
container_issue | 2 |
container_start_page | 291 |
container_title | GeoInformatica |
container_volume | 28 |
creator | Bi, Xin Zhang, Guoliang Lu, Lijun Yuan, George Y Zhao, Xiangguo Sun, Yongjiao Ma, Yuliang |
description | Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals using deep learning models poses three challenges, namely, sparse features, conservative prediction of extreme peaks, and varying periodic intervals. We address these issues by proposing a prediction framework called EPIC with extreme peak and interval calibrations. EPIC consists of a triple-channel prediction network and a calibration network. The prediction network learns the time-domain, frequency-domain, and deformable features of time-series patterns simultaneously. Amplitude residuals of extreme peaks are emphasized in the designed training loss function. In addition, to alleviate the problem of unaligned predictions resulting from inaccurate periodic intervals, we further design a calibration module to reduce the deviation of periodic intervals. The experimental results and ablation studies indicate that EPIC achieves excellent performance in long-term prediction tasks. |
doi_str_mv | 10.1007/s10707-023-00502-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3046042358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3046042358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cfb126b53396fe6c18a1998c0160b0478af06d227f0d9584725e8162f4693a283</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AU8Bz9FJ0ibpcVn8ggUveg5pO9Hs9suku6v_3tYK3jzNwDzPC_MmyRWDGwagbiMDBYoCFxQgA071UbJgmRJUSZ4ej7vQKZVMZafJWYwbmCgFi6RakgpdFxpb1EjKrt139W7wXWtrMvgGacTgMZI-YOXL6UBaHA5d2JKDH94Jfg4BGyQ92i2xbUV8O2DYj3Zpa18EOykXyYmzdcTL33mevN7fvawe6fr54Wm1XNOSKxho6QrGZZEJkUuHsmTasjzXJTAJBaRKWwey4lw5qPJMp4pnqJnkLpW5sFyL8-R6zu1D97HDOJhNtwvjK9EISCWkXGQTxWeqDF2MAZ3pg29s-DIMzNSmmds0Y5vmp00zSWKW4gi3bxj-ov-xvgFF1Hgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046042358</pqid></control><display><type>article</type><title>A deformable convolutional time-series prediction network with extreme peak and interval calibration</title><source>Springer Link</source><creator>Bi, Xin ; Zhang, Guoliang ; Lu, Lijun ; Yuan, George Y ; Zhao, Xiangguo ; Sun, Yongjiao ; Ma, Yuliang</creator><creatorcontrib>Bi, Xin ; Zhang, Guoliang ; Lu, Lijun ; Yuan, George Y ; Zhao, Xiangguo ; Sun, Yongjiao ; Ma, Yuliang</creatorcontrib><description>Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals using deep learning models poses three challenges, namely, sparse features, conservative prediction of extreme peaks, and varying periodic intervals. We address these issues by proposing a prediction framework called EPIC with extreme peak and interval calibrations. EPIC consists of a triple-channel prediction network and a calibration network. The prediction network learns the time-domain, frequency-domain, and deformable features of time-series patterns simultaneously. Amplitude residuals of extreme peaks are emphasized in the designed training loss function. In addition, to alleviate the problem of unaligned predictions resulting from inaccurate periodic intervals, we further design a calibration module to reduce the deviation of periodic intervals. The experimental results and ablation studies indicate that EPIC achieves excellent performance in long-term prediction tasks.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-023-00502-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Calibration ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Deformation ; Electrocardiography ; Formability ; Geographical Information Systems/Cartography ; Information Storage and Retrieval ; Intervals ; Multimedia Information Systems ; Predictions ; Time series</subject><ispartof>GeoInformatica, 2024-04, Vol.28 (2), p.291-312</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cfb126b53396fe6c18a1998c0160b0478af06d227f0d9584725e8162f4693a283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bi, Xin</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Lu, Lijun</creatorcontrib><creatorcontrib>Yuan, George Y</creatorcontrib><creatorcontrib>Zhao, Xiangguo</creatorcontrib><creatorcontrib>Sun, Yongjiao</creatorcontrib><creatorcontrib>Ma, Yuliang</creatorcontrib><title>A deformable convolutional time-series prediction network with extreme peak and interval calibration</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals using deep learning models poses three challenges, namely, sparse features, conservative prediction of extreme peaks, and varying periodic intervals. We address these issues by proposing a prediction framework called EPIC with extreme peak and interval calibrations. EPIC consists of a triple-channel prediction network and a calibration network. The prediction network learns the time-domain, frequency-domain, and deformable features of time-series patterns simultaneously. Amplitude residuals of extreme peaks are emphasized in the designed training loss function. In addition, to alleviate the problem of unaligned predictions resulting from inaccurate periodic intervals, we further design a calibration module to reduce the deviation of periodic intervals. The experimental results and ablation studies indicate that EPIC achieves excellent performance in long-term prediction tasks.</description><subject>Ablation</subject><subject>Calibration</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Deformation</subject><subject>Electrocardiography</subject><subject>Formability</subject><subject>Geographical Information Systems/Cartography</subject><subject>Information Storage and Retrieval</subject><subject>Intervals</subject><subject>Multimedia Information Systems</subject><subject>Predictions</subject><subject>Time series</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AU8Bz9FJ0ibpcVn8ggUveg5pO9Hs9suku6v_3tYK3jzNwDzPC_MmyRWDGwagbiMDBYoCFxQgA071UbJgmRJUSZ4ej7vQKZVMZafJWYwbmCgFi6RakgpdFxpb1EjKrt139W7wXWtrMvgGacTgMZI-YOXL6UBaHA5d2JKDH94Jfg4BGyQ92i2xbUV8O2DYj3Zpa18EOykXyYmzdcTL33mevN7fvawe6fr54Wm1XNOSKxho6QrGZZEJkUuHsmTasjzXJTAJBaRKWwey4lw5qPJMp4pnqJnkLpW5sFyL8-R6zu1D97HDOJhNtwvjK9EISCWkXGQTxWeqDF2MAZ3pg29s-DIMzNSmmds0Y5vmp00zSWKW4gi3bxj-ov-xvgFF1Hgg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bi, Xin</creator><creator>Zhang, Guoliang</creator><creator>Lu, Lijun</creator><creator>Yuan, George Y</creator><creator>Zhao, Xiangguo</creator><creator>Sun, Yongjiao</creator><creator>Ma, Yuliang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240401</creationdate><title>A deformable convolutional time-series prediction network with extreme peak and interval calibration</title><author>Bi, Xin ; Zhang, Guoliang ; Lu, Lijun ; Yuan, George Y ; Zhao, Xiangguo ; Sun, Yongjiao ; Ma, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cfb126b53396fe6c18a1998c0160b0478af06d227f0d9584725e8162f4693a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Calibration</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Deformation</topic><topic>Electrocardiography</topic><topic>Formability</topic><topic>Geographical Information Systems/Cartography</topic><topic>Information Storage and Retrieval</topic><topic>Intervals</topic><topic>Multimedia Information Systems</topic><topic>Predictions</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xin</creatorcontrib><creatorcontrib>Zhang, Guoliang</creatorcontrib><creatorcontrib>Lu, Lijun</creatorcontrib><creatorcontrib>Yuan, George Y</creatorcontrib><creatorcontrib>Zhao, Xiangguo</creatorcontrib><creatorcontrib>Sun, Yongjiao</creatorcontrib><creatorcontrib>Ma, Yuliang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Xin</au><au>Zhang, Guoliang</au><au>Lu, Lijun</au><au>Yuan, George Y</au><au>Zhao, Xiangguo</au><au>Sun, Yongjiao</au><au>Ma, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deformable convolutional time-series prediction network with extreme peak and interval calibration</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>291</spage><epage>312</epage><pages>291-312</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Deep modeling and analysis of human big data deepens our understanding of human activities. Periodic time-series signals, e.g., electrocardiographs, collected by health monitoring sensors reflect human health status and assist in disease diagnosis. However, long-term prediction of these signals using deep learning models poses three challenges, namely, sparse features, conservative prediction of extreme peaks, and varying periodic intervals. We address these issues by proposing a prediction framework called EPIC with extreme peak and interval calibrations. EPIC consists of a triple-channel prediction network and a calibration network. The prediction network learns the time-domain, frequency-domain, and deformable features of time-series patterns simultaneously. Amplitude residuals of extreme peaks are emphasized in the designed training loss function. In addition, to alleviate the problem of unaligned predictions resulting from inaccurate periodic intervals, we further design a calibration module to reduce the deviation of periodic intervals. The experimental results and ablation studies indicate that EPIC achieves excellent performance in long-term prediction tasks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-023-00502-8</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1384-6175 |
ispartof | GeoInformatica, 2024-04, Vol.28 (2), p.291-312 |
issn | 1384-6175 1573-7624 |
language | eng |
recordid | cdi_proquest_journals_3046042358 |
source | Springer Link |
subjects | Ablation Calibration Computer Science Data Structures and Information Theory Deep learning Deformation Electrocardiography Formability Geographical Information Systems/Cartography Information Storage and Retrieval Intervals Multimedia Information Systems Predictions Time series |
title | A deformable convolutional time-series prediction network with extreme peak and interval calibration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deformable%20convolutional%20time-series%20prediction%20network%20with%20extreme%20peak%20and%20interval%20calibration&rft.jtitle=GeoInformatica&rft.au=Bi,%20Xin&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=291&rft.epage=312&rft.pages=291-312&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-023-00502-8&rft_dat=%3Cproquest_cross%3E3046042358%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-cfb126b53396fe6c18a1998c0160b0478af06d227f0d9584725e8162f4693a283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046042358&rft_id=info:pmid/&rfr_iscdi=true |