Loading…

A benchmark generator for scenario-based discrete optimization

Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Sce...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications 2024-05, Vol.88 (1), p.349-378
Main Authors: de Moraes, Matheus Bernardelli, Coelho, Guilherme Palermo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA’s performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA’s failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00551-1