Loading…

Bounding the Rademacher complexity of Fourier neural operators

Recently, several types of neural operators have been developed, including deep operator networks, graph neural operators, and Multiwavelet-based operators. Compared with these models, the Fourier neural operator (FNO), a physics-inspired machine learning method, is computationally efficient and can...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2024-05, Vol.113 (5), p.2467-2498
Main Authors: Kim, Taeyoung, Kang, Myungjoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, several types of neural operators have been developed, including deep operator networks, graph neural operators, and Multiwavelet-based operators. Compared with these models, the Fourier neural operator (FNO), a physics-inspired machine learning method, is computationally efficient and can learn nonlinear operators between function spaces independent of a certain finite basis. This study investigated the bounding of the Rademacher complexity of the FNO based on specific group norms. Using capacity based on these norms, we bound the generalization error of the model. In addition, we investigate the correlation between the empirical generalization error and the proposed capacity of FNO. We infer that the type of group norm determines the information about the weights and architecture of the FNO model stored in capacity. The experimental results offer insight into the impact of the number of modes used in the FNO model on the generalization error. The results confirm that our capacity is an effective index for estimating generalization errors.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-024-06533-y