Loading…
In the Shallow Water: Auto-Bäcklund, Hetero-Bäcklund and Scaling Transformations via a (2+1)-Dimensional Generalized Broer-Kaup System
These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal v...
Saved in:
Published in: | Qualitative theory of dynamical systems 2024-09, Vol.23 (4), Article 184 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | These days, watching the shallow water waves, people think about the nonlinear Broer-type models, e.g., a (2+1)-dimensional generalized Broer-Kaup system modeling, e.g., certain nonlinear long waves in the shallow water. For that system, with reference to, e.g., the wave height and wave horizontal velocity, this paper avails of symbolic computation to obtain (A) an auto-Bäcklund transformation with some solitons; (B) a group of the scaling transformations and (C) a group of the hetero-Bäcklund transformations, to a known linear partial differential equation, from that system. Results rely on the coefficients in that system. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-024-01025-9 |