Loading…
Bivariate distributions with equi-dispersed normal conditionals and related models
A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article...
Saved in:
Published in: | Metrika 2024-05, Vol.87 (4), p.427-448 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A random variable is equi-dispersed if its mean equals its variance. A Poisson distribution is a classical example of this phenomenon. However, a less well-known fact is that the class of normal densities that are equi-dispersed constitutes a one parameter exponential family. In the present article our main focus is on univariate and bivariate models with equi-dispersed normal component distributions. We discuss distributional features of such models, explore inferential aspects and include an example of application of equi-dispersed models. Some related models are discused in Appendices. |
---|---|
ISSN: | 0026-1335 1435-926X |
DOI: | 10.1007/s00184-023-00921-5 |