Loading…
An optimal algorithm for geodesic mutual visibility on hexagonal grids
For a set of robots (or agents) moving in a graph, two properties are highly desirable: confidentiality (i.e., a message between two agents must not pass through any intermediate agent) and efficiency (i.e., messages are delivered through shortest paths). These properties can be obtained if the \tex...
Saved in:
Published in: | arXiv.org 2024-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a set of robots (or agents) moving in a graph, two properties are highly desirable: confidentiality (i.e., a message between two agents must not pass through any intermediate agent) and efficiency (i.e., messages are delivered through shortest paths). These properties can be obtained if the \textsc{Geodesic Mutual Visibility} (GMV, for short) problem is solved: oblivious robots move along the edges of the graph, without collisions, to occupy some vertices that guarantee they become pairwise geodesic mutually visible. This means there is a shortest path (i.e., a ``geodesic'') between each pair of robots along which no other robots reside. In this work, we optimally solve GMV on finite hexagonal grids \(G_k\). This, in turn, requires first solving a graph combinatorial problem, i.e. determining the maximum number of mutually visible vertices in \(G_k\). |
---|---|
ISSN: | 2331-8422 |