Loading…
Fault Networks in Triaxial Tectonic Settings: Analog Modeling of Distributed Continental Extension With Lateral Shortening
Triaxial deformation is a general feature of continental tectonics, but its controls and the systematics of associated fault networks remain poorly understood. We present triaxial analog experiments mimicking crustal thinning resulting from distributed longitudinal extension and lateral shortening....
Saved in:
Published in: | Tectonics (Washington, D.C.) D.C.), 2024-05, Vol.43 (5), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Triaxial deformation is a general feature of continental tectonics, but its controls and the systematics of associated fault networks remain poorly understood. We present triaxial analog experiments mimicking crustal thinning resulting from distributed longitudinal extension and lateral shortening. Contemporary longitudinal extension and lateral shortening are related by the principal horizontal strain ratio (PHSR). We investigate the effect of crustal geometry, rheology and strain rate on deformation localization, faulting regime and pattern, and PHSR in brittle and brittle‐viscous crustal‐scale models. We find that in brittle models the fault networks reflect the basal boundary condition and fault‐density scales inversely with brittle layer thickness. In brittle‐viscous models, as strain rate (ė) decreases, (a) Three fault patterns emerge: conjugate sets of strike‐slip faults (ė > 3 × 10−4 s−1, PHSR > 0.31), sets of parallel oblique normal faults (ė = 0.3–3 × 10−4 s−1, PHSR = 0.15–0.25), horst‐and‐graben system (ė |
---|---|
ISSN: | 0278-7407 1944-9194 |
DOI: | 10.1029/2023TC008127 |