Loading…

Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China

Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mountain science 2024-04, Vol.21 (4), p.1231-1245
Main Authors: Zhou, Yonghao, Hu, Xiewen, Xi, Chuanjie, Wen, Hong, Cao, Xichao, Jin, Tao, Zhou, Ruichen, Zhang, Yu, Gong, Xueqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3
container_end_page 1245
container_issue 4
container_start_page 1231
container_title Journal of mountain science
container_volume 21
creator Zhou, Yonghao
Hu, Xiewen
Xi, Chuanjie
Wen, Hong
Cao, Xichao
Jin, Tao
Zhou, Ruichen
Zhang, Yu
Gong, Xueqiang
description Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.
doi_str_mv 10.1007/s11629-023-8500-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061234382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061234382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</originalsourceid><addsrcrecordid>eNp1kM1KxDAYRYMoOP48gLuAW6P5aZNmqYOOwoAuxnVI0rSToU1r0iLz9mYYwZWr7y7OvR8cAG4IvicYi4dECKcSYcpQVWKM8AlYECkZwoyS05y5oIgzws_BRUo7jLmQFVmAdtVp63UHa2eiT7Dphm-Y5mTdOHnjOz_tYa_H0YcWGp1cDYcA7dAbH3Luh9p1CfoAp62DHzp2c-Y2SYd2HOCTTj7cweXWB30FzhrdJXf9ey_B58vzZvmK1u-rt-XjGlkiqwkxUhrJqCVOFwLXXFjaSO5oqY0rClYbI7BmtuSlLowQTFTcscraymVKSs0uwe1xd4zD1-zSpHbDHEN-qRjmhLKCVTRT5EjZOKQUXaPG6Hsd94pgdfCpjj5V9qkOPhXOHXrspMyG1sW_5f9LP-W_eGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061234382</pqid></control><display><type>article</type><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><source>Springer Nature</source><creator>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</creator><creatorcontrib>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</creatorcontrib><description>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-023-8500-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Debris flow ; Detritus ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Environment ; Factor analysis ; Flow mapping ; Geography ; Glacial drift ; Gullies ; Landforms ; Landslides ; Machine learning ; Mapping ; Mathematical models ; Original Article ; Prediction models ; Statistical analysis ; Statistical models ; Susceptibility ; Valleys</subject><ispartof>Journal of mountain science, 2024-04, Vol.21 (4), p.1231-1245</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</cites><orcidid>0000-0001-9244-735X ; 0000-0002-7816-5601 ; 0000-0001-8596-8392 ; 0009-0008-4492-1158 ; 0009-0009-5064-6639 ; 0000-0002-7364-0282 ; 0009-0002-2226-6873 ; 0000-0002-5333-6312 ; 0000-0002-2679-6268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yonghao</creatorcontrib><creatorcontrib>Hu, Xiewen</creatorcontrib><creatorcontrib>Xi, Chuanjie</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Cao, Xichao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zhou, Ruichen</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gong, Xueqiang</creatorcontrib><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</description><subject>Debris flow</subject><subject>Detritus</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Environment</subject><subject>Factor analysis</subject><subject>Flow mapping</subject><subject>Geography</subject><subject>Glacial drift</subject><subject>Gullies</subject><subject>Landforms</subject><subject>Landslides</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Susceptibility</subject><subject>Valleys</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAYRYMoOP48gLuAW6P5aZNmqYOOwoAuxnVI0rSToU1r0iLz9mYYwZWr7y7OvR8cAG4IvicYi4dECKcSYcpQVWKM8AlYECkZwoyS05y5oIgzws_BRUo7jLmQFVmAdtVp63UHa2eiT7Dphm-Y5mTdOHnjOz_tYa_H0YcWGp1cDYcA7dAbH3Luh9p1CfoAp62DHzp2c-Y2SYd2HOCTTj7cweXWB30FzhrdJXf9ey_B58vzZvmK1u-rt-XjGlkiqwkxUhrJqCVOFwLXXFjaSO5oqY0rClYbI7BmtuSlLowQTFTcscraymVKSs0uwe1xd4zD1-zSpHbDHEN-qRjmhLKCVTRT5EjZOKQUXaPG6Hsd94pgdfCpjj5V9qkOPhXOHXrspMyG1sW_5f9LP-W_eGA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhou, Yonghao</creator><creator>Hu, Xiewen</creator><creator>Xi, Chuanjie</creator><creator>Wen, Hong</creator><creator>Cao, Xichao</creator><creator>Jin, Tao</creator><creator>Zhou, Ruichen</creator><creator>Zhang, Yu</creator><creator>Gong, Xueqiang</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9244-735X</orcidid><orcidid>https://orcid.org/0000-0002-7816-5601</orcidid><orcidid>https://orcid.org/0000-0001-8596-8392</orcidid><orcidid>https://orcid.org/0009-0008-4492-1158</orcidid><orcidid>https://orcid.org/0009-0009-5064-6639</orcidid><orcidid>https://orcid.org/0000-0002-7364-0282</orcidid><orcidid>https://orcid.org/0009-0002-2226-6873</orcidid><orcidid>https://orcid.org/0000-0002-5333-6312</orcidid><orcidid>https://orcid.org/0000-0002-2679-6268</orcidid></search><sort><creationdate>20240401</creationdate><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><author>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Debris flow</topic><topic>Detritus</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Environment</topic><topic>Factor analysis</topic><topic>Flow mapping</topic><topic>Geography</topic><topic>Glacial drift</topic><topic>Gullies</topic><topic>Landforms</topic><topic>Landslides</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Susceptibility</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yonghao</creatorcontrib><creatorcontrib>Hu, Xiewen</creatorcontrib><creatorcontrib>Xi, Chuanjie</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Cao, Xichao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zhou, Ruichen</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gong, Xueqiang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yonghao</au><au>Hu, Xiewen</au><au>Xi, Chuanjie</au><au>Wen, Hong</au><au>Cao, Xichao</au><au>Jin, Tao</au><au>Zhou, Ruichen</au><au>Zhang, Yu</au><au>Gong, Xueqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>1231</spage><epage>1245</epage><pages>1231-1245</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-023-8500-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9244-735X</orcidid><orcidid>https://orcid.org/0000-0002-7816-5601</orcidid><orcidid>https://orcid.org/0000-0001-8596-8392</orcidid><orcidid>https://orcid.org/0009-0008-4492-1158</orcidid><orcidid>https://orcid.org/0009-0009-5064-6639</orcidid><orcidid>https://orcid.org/0000-0002-7364-0282</orcidid><orcidid>https://orcid.org/0009-0002-2226-6873</orcidid><orcidid>https://orcid.org/0000-0002-5333-6312</orcidid><orcidid>https://orcid.org/0000-0002-2679-6268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1672-6316
ispartof Journal of mountain science, 2024-04, Vol.21 (4), p.1231-1245
issn 1672-6316
1993-0321
1008-2786
language eng
recordid cdi_proquest_journals_3061234382
source Springer Nature
subjects Debris flow
Detritus
Earth and Environmental Science
Earth Sciences
Ecology
Environment
Factor analysis
Flow mapping
Geography
Glacial drift
Gullies
Landforms
Landslides
Machine learning
Mapping
Mathematical models
Original Article
Prediction models
Statistical analysis
Statistical models
Susceptibility
Valleys
title Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glacial%20debris%20flow%20susceptibility%20mapping%20based%20on%20combined%20models%20in%20the%20Parlung%20Tsangpo%20Basin,%20China&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Zhou,%20Yonghao&rft.date=2024-04-01&rft.volume=21&rft.issue=4&rft.spage=1231&rft.epage=1245&rft.pages=1231-1245&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-023-8500-0&rft_dat=%3Cproquest_cross%3E3061234382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061234382&rft_id=info:pmid/&rfr_iscdi=true