Loading…
Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China
Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlu...
Saved in:
Published in: | Journal of mountain science 2024-04, Vol.21 (4), p.1231-1245 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3 |
container_end_page | 1245 |
container_issue | 4 |
container_start_page | 1231 |
container_title | Journal of mountain science |
container_volume | 21 |
creator | Zhou, Yonghao Hu, Xiewen Xi, Chuanjie Wen, Hong Cao, Xichao Jin, Tao Zhou, Ruichen Zhang, Yu Gong, Xueqiang |
description | Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”. |
doi_str_mv | 10.1007/s11629-023-8500-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061234382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061234382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</originalsourceid><addsrcrecordid>eNp1kM1KxDAYRYMoOP48gLuAW6P5aZNmqYOOwoAuxnVI0rSToU1r0iLz9mYYwZWr7y7OvR8cAG4IvicYi4dECKcSYcpQVWKM8AlYECkZwoyS05y5oIgzws_BRUo7jLmQFVmAdtVp63UHa2eiT7Dphm-Y5mTdOHnjOz_tYa_H0YcWGp1cDYcA7dAbH3Luh9p1CfoAp62DHzp2c-Y2SYd2HOCTTj7cweXWB30FzhrdJXf9ey_B58vzZvmK1u-rt-XjGlkiqwkxUhrJqCVOFwLXXFjaSO5oqY0rClYbI7BmtuSlLowQTFTcscraymVKSs0uwe1xd4zD1-zSpHbDHEN-qRjmhLKCVTRT5EjZOKQUXaPG6Hsd94pgdfCpjj5V9qkOPhXOHXrspMyG1sW_5f9LP-W_eGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061234382</pqid></control><display><type>article</type><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><source>Springer Nature</source><creator>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</creator><creatorcontrib>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</creatorcontrib><description>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-023-8500-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Debris flow ; Detritus ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Environment ; Factor analysis ; Flow mapping ; Geography ; Glacial drift ; Gullies ; Landforms ; Landslides ; Machine learning ; Mapping ; Mathematical models ; Original Article ; Prediction models ; Statistical analysis ; Statistical models ; Susceptibility ; Valleys</subject><ispartof>Journal of mountain science, 2024-04, Vol.21 (4), p.1231-1245</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</cites><orcidid>0000-0001-9244-735X ; 0000-0002-7816-5601 ; 0000-0001-8596-8392 ; 0009-0008-4492-1158 ; 0009-0009-5064-6639 ; 0000-0002-7364-0282 ; 0009-0002-2226-6873 ; 0000-0002-5333-6312 ; 0000-0002-2679-6268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yonghao</creatorcontrib><creatorcontrib>Hu, Xiewen</creatorcontrib><creatorcontrib>Xi, Chuanjie</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Cao, Xichao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zhou, Ruichen</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gong, Xueqiang</creatorcontrib><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</description><subject>Debris flow</subject><subject>Detritus</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Environment</subject><subject>Factor analysis</subject><subject>Flow mapping</subject><subject>Geography</subject><subject>Glacial drift</subject><subject>Gullies</subject><subject>Landforms</subject><subject>Landslides</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Susceptibility</subject><subject>Valleys</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAYRYMoOP48gLuAW6P5aZNmqYOOwoAuxnVI0rSToU1r0iLz9mYYwZWr7y7OvR8cAG4IvicYi4dECKcSYcpQVWKM8AlYECkZwoyS05y5oIgzws_BRUo7jLmQFVmAdtVp63UHa2eiT7Dphm-Y5mTdOHnjOz_tYa_H0YcWGp1cDYcA7dAbH3Luh9p1CfoAp62DHzp2c-Y2SYd2HOCTTj7cweXWB30FzhrdJXf9ey_B58vzZvmK1u-rt-XjGlkiqwkxUhrJqCVOFwLXXFjaSO5oqY0rClYbI7BmtuSlLowQTFTcscraymVKSs0uwe1xd4zD1-zSpHbDHEN-qRjmhLKCVTRT5EjZOKQUXaPG6Hsd94pgdfCpjj5V9qkOPhXOHXrspMyG1sW_5f9LP-W_eGA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhou, Yonghao</creator><creator>Hu, Xiewen</creator><creator>Xi, Chuanjie</creator><creator>Wen, Hong</creator><creator>Cao, Xichao</creator><creator>Jin, Tao</creator><creator>Zhou, Ruichen</creator><creator>Zhang, Yu</creator><creator>Gong, Xueqiang</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9244-735X</orcidid><orcidid>https://orcid.org/0000-0002-7816-5601</orcidid><orcidid>https://orcid.org/0000-0001-8596-8392</orcidid><orcidid>https://orcid.org/0009-0008-4492-1158</orcidid><orcidid>https://orcid.org/0009-0009-5064-6639</orcidid><orcidid>https://orcid.org/0000-0002-7364-0282</orcidid><orcidid>https://orcid.org/0009-0002-2226-6873</orcidid><orcidid>https://orcid.org/0000-0002-5333-6312</orcidid><orcidid>https://orcid.org/0000-0002-2679-6268</orcidid></search><sort><creationdate>20240401</creationdate><title>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</title><author>Zhou, Yonghao ; Hu, Xiewen ; Xi, Chuanjie ; Wen, Hong ; Cao, Xichao ; Jin, Tao ; Zhou, Ruichen ; Zhang, Yu ; Gong, Xueqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Debris flow</topic><topic>Detritus</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Environment</topic><topic>Factor analysis</topic><topic>Flow mapping</topic><topic>Geography</topic><topic>Glacial drift</topic><topic>Gullies</topic><topic>Landforms</topic><topic>Landslides</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Susceptibility</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yonghao</creatorcontrib><creatorcontrib>Hu, Xiewen</creatorcontrib><creatorcontrib>Xi, Chuanjie</creatorcontrib><creatorcontrib>Wen, Hong</creatorcontrib><creatorcontrib>Cao, Xichao</creatorcontrib><creatorcontrib>Jin, Tao</creatorcontrib><creatorcontrib>Zhou, Ruichen</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Gong, Xueqiang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yonghao</au><au>Hu, Xiewen</au><au>Xi, Chuanjie</au><au>Wen, Hong</au><au>Cao, Xichao</au><au>Jin, Tao</au><au>Zhou, Ruichen</au><au>Zhang, Yu</au><au>Gong, Xueqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>1231</spage><epage>1245</epage><pages>1231-1245</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Machine learning (ML)-based prediction models for mapping hazard (e.g., landslide and debris flow) susceptibility have been widely developed in recent research. However, in some specific areas, ML models have limited application because of the uncertainties in identifying negative samples. The Parlung Tsangpo Basin exemplifies a region prone to recurrent glacial debris flows (GDFs) and is characterized by a prominent landform featuring deep gullies. Considering the limitations of the ML model, we developed and compared two combined statistical models (FA-WE and FA-IC) based on factor analysis (FA), weight of evidence (WE), and the information content (IC) method. The final GDF susceptibility maps were generated by selecting 8 most important static factors and considering the influence of precipitation. The results show that the FA-IC model has the best performance. The areas with a very high susceptibility to GDFs are primarily located in the narrow valley section upstream, on both sides of the valley in the middle and downstream of the Parlung Tsangpo River, and in the narrow valley section of each tributary. These areas encompass 86 gullies and are characterized as “narrow and steep”.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-023-8500-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9244-735X</orcidid><orcidid>https://orcid.org/0000-0002-7816-5601</orcidid><orcidid>https://orcid.org/0000-0001-8596-8392</orcidid><orcidid>https://orcid.org/0009-0008-4492-1158</orcidid><orcidid>https://orcid.org/0009-0009-5064-6639</orcidid><orcidid>https://orcid.org/0000-0002-7364-0282</orcidid><orcidid>https://orcid.org/0009-0002-2226-6873</orcidid><orcidid>https://orcid.org/0000-0002-5333-6312</orcidid><orcidid>https://orcid.org/0000-0002-2679-6268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6316 |
ispartof | Journal of mountain science, 2024-04, Vol.21 (4), p.1231-1245 |
issn | 1672-6316 1993-0321 1008-2786 |
language | eng |
recordid | cdi_proquest_journals_3061234382 |
source | Springer Nature |
subjects | Debris flow Detritus Earth and Environmental Science Earth Sciences Ecology Environment Factor analysis Flow mapping Geography Glacial drift Gullies Landforms Landslides Machine learning Mapping Mathematical models Original Article Prediction models Statistical analysis Statistical models Susceptibility Valleys |
title | Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glacial%20debris%20flow%20susceptibility%20mapping%20based%20on%20combined%20models%20in%20the%20Parlung%20Tsangpo%20Basin,%20China&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Zhou,%20Yonghao&rft.date=2024-04-01&rft.volume=21&rft.issue=4&rft.spage=1231&rft.epage=1245&rft.pages=1231-1245&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-023-8500-0&rft_dat=%3Cproquest_cross%3E3061234382%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-315b932c1ea470d67c2f96e25abe443dbb70a3c565a4b773786e38cc8e96e99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3061234382&rft_id=info:pmid/&rfr_iscdi=true |