Loading…

Semantic segmentation of large-scale point clouds with neighborhood uncertainty

Large-scale point cloud segmentation is one of the important research directions in the field of computer vision, aiming at segmenting 3D point cloud data into parts with semantic meaning, which is widely used in the fields of robot perception, automated driving, and virtual reality. In practical ap...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications 2023-12, Vol.83 (21), p.60949-60964
Main Authors: Bao, Yong, Wen, Haibiao, Zhang, Baoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large-scale point cloud segmentation is one of the important research directions in the field of computer vision, aiming at segmenting 3D point cloud data into parts with semantic meaning, which is widely used in the fields of robot perception, automated driving, and virtual reality. In practical applications, intelligences often face various uncertainties such as sensor noise, missing data, and uncertain model parameter estimation. However, many current research works do not consider the effects of these uncertainties, which can cause the model to overfit the noisy data and thus affect the model performance. In this paper, we propose a point cloud segmentation method with domain uncertainty that can greatly improve the robustness of the model to noise. Specifically, we first compute the neighborhood uncertainty, which is more reflective of the semantics of a local region than the prediction of a single point, which will reduce the impact of noise. Next, we fuse the uncertainty into the objective function, which allows the model to focus more on relatively deterministic data. Finally, we validate on the large-scale datasets S3DIS and Toronto3D, and the segmentation performance is substantially improved in both cases.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-023-17814-4