Loading…
Wasserstein gradient flow for optimal probability measure decomposition
We examine the infinite-dimensional optimization problem of finding a decomposition of a probability measure into K probability sub-measures to minimize specific loss functions inspired by applications in clustering and user grouping. We analytically explore the structures of the support of optimal...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examine the infinite-dimensional optimization problem of finding a decomposition of a probability measure into K probability sub-measures to minimize specific loss functions inspired by applications in clustering and user grouping. We analytically explore the structures of the support of optimal sub-measures and introduce algorithms based on Wasserstein gradient flow, demonstrating their convergence. Numerical results illustrate the implementability of our algorithms and provide further insights. |
---|---|
ISSN: | 2331-8422 |