Loading…
Learning to Augment Graphs: Machine-Learning-Based Social Network Intervention With Self-Supervision
This article proposes a machine learning (ML)-based approach to solve a graph optimization problem, named network intervention with limited degradation (NILD), which aims at adding new edges to augment the graph to minimize the local clustering coefficient (LCC) of a target node. The main applicatio...
Saved in:
Published in: | IEEE transactions on computational social systems 2024-06, Vol.11 (3), p.3286-3298 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes a machine learning (ML)-based approach to solve a graph optimization problem, named network intervention with limited degradation (NILD), which aims at adding new edges to augment the graph to minimize the local clustering coefficient (LCC) of a target node. The main application of NILD is to perform network intervention , to improve the mental well-being of individuals. This article proposes a new framework, named network intervention with self-supervision (NISS), which employs reinforcement learning and self-supervised learning (SSL) to effectively solve the problem. We propose two new effective pretext tasks in SSL, Distance-to-target prediction task and LCC increment prediction task to improve the model performance. In addition, we also propose two new embedding approaches, neighborhood embedding (NE) and constraint property embedding (CPE), to capture the structural information of the graph. Extensive experiments on multiple real social networks and synthetic datasets show that our proposed approach significantly outperforms the other state-of-the-art baselines, including ML-based baselines and deterministic algorithms. |
---|---|
ISSN: | 2329-924X 2329-924X 2373-7476 |
DOI: | 10.1109/TCSS.2023.3340230 |