Loading…

Model-based scenarios for achieving net negative emissions in the food system

Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Con...

Full description

Saved in:
Bibliographic Details
Published in:PLOS climate 2023-09, Vol.2 (9), p.e0000181
Main Authors: Almaraz, Maya, Houlton, Benjamin Z., Clark, Michael, Holzer, Iris, Zhou, Yanqiu, Rasmussen, Laura, Moberg, Emily, Manaigo, Erin, Halpern, Benjamin S., Scarborough, Courtney, Lei, Xin Gen, Ho, Melissa, Allison, Edward, Sibanda, Lindiwe, Salter, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253
cites cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253
container_end_page
container_issue 9
container_start_page e0000181
container_title PLOS climate
container_volume 2
creator Almaraz, Maya
Houlton, Benjamin Z.
Clark, Michael
Holzer, Iris
Zhou, Yanqiu
Rasmussen, Laura
Moberg, Emily
Manaigo, Erin
Halpern, Benjamin S.
Scarborough, Courtney
Lei, Xin Gen
Ho, Melissa
Allison, Edward
Sibanda, Lindiwe
Salter, Andrew
description Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO 2 . However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.
doi_str_mv 10.1371/journal.pclm.0000181
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069190538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069190538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</originalsourceid><addsrcrecordid>eNpNkE1rwzAMhs3YYGXrP9jBsHM6O47j5DjKvqBll-1sXFtuXZK4s9JC__1c2sEEQgI9rw4PIQ-czbhQ_Gkb92kw3Wxnu37GcvGGX5FJqWpViJKx63_7LZkibjNTqrbiTE3IchkddMXKIDiKFgaTQkTqY6LGbgIcwrCmA4y512YMB6DQB8QQB6RhoOMGMhtz9Igj9PfkxpsOYXqZd-T79eVr_l4sPt8-5s-LwnLFeFHzilXKuoZZL6D2lZcrWzYeqnaV79IqZ610ljnDoVTSyYZD66VSQoEqpbgjj-e_uxR_9oCjvlhALVjd8pZJ0WSqOlM2RcQEXu9S6E06as70yd1fSp_c6Ys78QuE42WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069190538</pqid></control><display><type>article</type><title>Model-based scenarios for achieving net negative emissions in the food system</title><source>ProQuest - Publicly Available Content Database</source><creator>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew</creator><contributor>Benkeblia, Noureddine</contributor><creatorcontrib>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew ; Benkeblia, Noureddine</creatorcontrib><description>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO 2 . However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</description><identifier>ISSN: 2767-3200</identifier><identifier>EISSN: 2767-3200</identifier><identifier>DOI: 10.1371/journal.pclm.0000181</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agricultural commodities ; Agricultural practices ; Agricultural production ; Agroforestry ; Carbon dioxide ; Carbon dioxide removal ; Climate change ; Climate change mitigation ; Consumption ; Decarbonization ; Emissions ; Emissions control ; Environmental impact ; Farming systems ; Farms ; Feeds ; Fertilizers ; Food ; Food industry ; Food waste ; Greenhouse gases ; Harvesting ; Intensive farming ; Land use planning ; Livestock ; Livestock feeds ; Organic soils ; R&amp;D ; Research &amp; development ; Seafood ; Soil amendment ; Technology adoption</subject><ispartof>PLOS climate, 2023-09, Vol.2 (9), p.e0000181</ispartof><rights>2023 Almaraz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</citedby><cites>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</cites><orcidid>0000-0001-8884-4432 ; 0000-0002-1414-0261 ; 0000-0002-1293-7808 ; 0000-0001-7786-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069190538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069190538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><contributor>Benkeblia, Noureddine</contributor><creatorcontrib>Almaraz, Maya</creatorcontrib><creatorcontrib>Houlton, Benjamin Z.</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><creatorcontrib>Holzer, Iris</creatorcontrib><creatorcontrib>Zhou, Yanqiu</creatorcontrib><creatorcontrib>Rasmussen, Laura</creatorcontrib><creatorcontrib>Moberg, Emily</creatorcontrib><creatorcontrib>Manaigo, Erin</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Scarborough, Courtney</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><creatorcontrib>Ho, Melissa</creatorcontrib><creatorcontrib>Allison, Edward</creatorcontrib><creatorcontrib>Sibanda, Lindiwe</creatorcontrib><creatorcontrib>Salter, Andrew</creatorcontrib><title>Model-based scenarios for achieving net negative emissions in the food system</title><title>PLOS climate</title><description>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO 2 . However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</description><subject>Agricultural commodities</subject><subject>Agricultural practices</subject><subject>Agricultural production</subject><subject>Agroforestry</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Consumption</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Environmental impact</subject><subject>Farming systems</subject><subject>Farms</subject><subject>Feeds</subject><subject>Fertilizers</subject><subject>Food</subject><subject>Food industry</subject><subject>Food waste</subject><subject>Greenhouse gases</subject><subject>Harvesting</subject><subject>Intensive farming</subject><subject>Land use planning</subject><subject>Livestock</subject><subject>Livestock feeds</subject><subject>Organic soils</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Seafood</subject><subject>Soil amendment</subject><subject>Technology adoption</subject><issn>2767-3200</issn><issn>2767-3200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkE1rwzAMhs3YYGXrP9jBsHM6O47j5DjKvqBll-1sXFtuXZK4s9JC__1c2sEEQgI9rw4PIQ-czbhQ_Gkb92kw3Wxnu37GcvGGX5FJqWpViJKx63_7LZkibjNTqrbiTE3IchkddMXKIDiKFgaTQkTqY6LGbgIcwrCmA4y512YMB6DQB8QQB6RhoOMGMhtz9Igj9PfkxpsOYXqZd-T79eVr_l4sPt8-5s-LwnLFeFHzilXKuoZZL6D2lZcrWzYeqnaV79IqZ610ljnDoVTSyYZD66VSQoEqpbgjj-e_uxR_9oCjvlhALVjd8pZJ0WSqOlM2RcQEXu9S6E06as70yd1fSp_c6Ys78QuE42WQ</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Almaraz, Maya</creator><creator>Houlton, Benjamin Z.</creator><creator>Clark, Michael</creator><creator>Holzer, Iris</creator><creator>Zhou, Yanqiu</creator><creator>Rasmussen, Laura</creator><creator>Moberg, Emily</creator><creator>Manaigo, Erin</creator><creator>Halpern, Benjamin S.</creator><creator>Scarborough, Courtney</creator><creator>Lei, Xin Gen</creator><creator>Ho, Melissa</creator><creator>Allison, Edward</creator><creator>Sibanda, Lindiwe</creator><creator>Salter, Andrew</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-8884-4432</orcidid><orcidid>https://orcid.org/0000-0002-1414-0261</orcidid><orcidid>https://orcid.org/0000-0002-1293-7808</orcidid><orcidid>https://orcid.org/0000-0001-7786-6783</orcidid></search><sort><creationdate>20230906</creationdate><title>Model-based scenarios for achieving net negative emissions in the food system</title><author>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural commodities</topic><topic>Agricultural practices</topic><topic>Agricultural production</topic><topic>Agroforestry</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Consumption</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Environmental impact</topic><topic>Farming systems</topic><topic>Farms</topic><topic>Feeds</topic><topic>Fertilizers</topic><topic>Food</topic><topic>Food industry</topic><topic>Food waste</topic><topic>Greenhouse gases</topic><topic>Harvesting</topic><topic>Intensive farming</topic><topic>Land use planning</topic><topic>Livestock</topic><topic>Livestock feeds</topic><topic>Organic soils</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Seafood</topic><topic>Soil amendment</topic><topic>Technology adoption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almaraz, Maya</creatorcontrib><creatorcontrib>Houlton, Benjamin Z.</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><creatorcontrib>Holzer, Iris</creatorcontrib><creatorcontrib>Zhou, Yanqiu</creatorcontrib><creatorcontrib>Rasmussen, Laura</creatorcontrib><creatorcontrib>Moberg, Emily</creatorcontrib><creatorcontrib>Manaigo, Erin</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Scarborough, Courtney</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><creatorcontrib>Ho, Melissa</creatorcontrib><creatorcontrib>Allison, Edward</creatorcontrib><creatorcontrib>Sibanda, Lindiwe</creatorcontrib><creatorcontrib>Salter, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>PLOS climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almaraz, Maya</au><au>Houlton, Benjamin Z.</au><au>Clark, Michael</au><au>Holzer, Iris</au><au>Zhou, Yanqiu</au><au>Rasmussen, Laura</au><au>Moberg, Emily</au><au>Manaigo, Erin</au><au>Halpern, Benjamin S.</au><au>Scarborough, Courtney</au><au>Lei, Xin Gen</au><au>Ho, Melissa</au><au>Allison, Edward</au><au>Sibanda, Lindiwe</au><au>Salter, Andrew</au><au>Benkeblia, Noureddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based scenarios for achieving net negative emissions in the food system</atitle><jtitle>PLOS climate</jtitle><date>2023-09-06</date><risdate>2023</risdate><volume>2</volume><issue>9</issue><spage>e0000181</spage><pages>e0000181-</pages><issn>2767-3200</issn><eissn>2767-3200</eissn><abstract>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO 2 . However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pclm.0000181</doi><orcidid>https://orcid.org/0000-0001-8884-4432</orcidid><orcidid>https://orcid.org/0000-0002-1414-0261</orcidid><orcidid>https://orcid.org/0000-0002-1293-7808</orcidid><orcidid>https://orcid.org/0000-0001-7786-6783</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2767-3200
ispartof PLOS climate, 2023-09, Vol.2 (9), p.e0000181
issn 2767-3200
2767-3200
language eng
recordid cdi_proquest_journals_3069190538
source ProQuest - Publicly Available Content Database
subjects Agricultural commodities
Agricultural practices
Agricultural production
Agroforestry
Carbon dioxide
Carbon dioxide removal
Climate change
Climate change mitigation
Consumption
Decarbonization
Emissions
Emissions control
Environmental impact
Farming systems
Farms
Feeds
Fertilizers
Food
Food industry
Food waste
Greenhouse gases
Harvesting
Intensive farming
Land use planning
Livestock
Livestock feeds
Organic soils
R&D
Research & development
Seafood
Soil amendment
Technology adoption
title Model-based scenarios for achieving net negative emissions in the food system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20scenarios%20for%20achieving%20net%20negative%20emissions%20in%20the%20food%20system&rft.jtitle=PLOS%20climate&rft.au=Almaraz,%20Maya&rft.date=2023-09-06&rft.volume=2&rft.issue=9&rft.spage=e0000181&rft.pages=e0000181-&rft.issn=2767-3200&rft.eissn=2767-3200&rft_id=info:doi/10.1371/journal.pclm.0000181&rft_dat=%3Cproquest_cross%3E3069190538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069190538&rft_id=info:pmid/&rfr_iscdi=true