Loading…
Model-based scenarios for achieving net negative emissions in the food system
Most climate mitigation scenarios point to a combination of GHG emission reductions and CO 2 removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Con...
Saved in:
Published in: | PLOS climate 2023-09, Vol.2 (9), p.e0000181 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253 |
---|---|
cites | cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253 |
container_end_page | |
container_issue | 9 |
container_start_page | e0000181 |
container_title | PLOS climate |
container_volume | 2 |
creator | Almaraz, Maya Houlton, Benjamin Z. Clark, Michael Holzer, Iris Zhou, Yanqiu Rasmussen, Laura Moberg, Emily Manaigo, Erin Halpern, Benjamin S. Scarborough, Courtney Lei, Xin Gen Ho, Melissa Allison, Edward Sibanda, Lindiwe Salter, Andrew |
description | Most climate mitigation scenarios point to a combination of GHG emission reductions and CO
2
removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO
2
. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies. |
doi_str_mv | 10.1371/journal.pclm.0000181 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069190538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069190538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</originalsourceid><addsrcrecordid>eNpNkE1rwzAMhs3YYGXrP9jBsHM6O47j5DjKvqBll-1sXFtuXZK4s9JC__1c2sEEQgI9rw4PIQ-czbhQ_Gkb92kw3Wxnu37GcvGGX5FJqWpViJKx63_7LZkibjNTqrbiTE3IchkddMXKIDiKFgaTQkTqY6LGbgIcwrCmA4y512YMB6DQB8QQB6RhoOMGMhtz9Igj9PfkxpsOYXqZd-T79eVr_l4sPt8-5s-LwnLFeFHzilXKuoZZL6D2lZcrWzYeqnaV79IqZ610ljnDoVTSyYZD66VSQoEqpbgjj-e_uxR_9oCjvlhALVjd8pZJ0WSqOlM2RcQEXu9S6E06as70yd1fSp_c6Ys78QuE42WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069190538</pqid></control><display><type>article</type><title>Model-based scenarios for achieving net negative emissions in the food system</title><source>ProQuest - Publicly Available Content Database</source><creator>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew</creator><contributor>Benkeblia, Noureddine</contributor><creatorcontrib>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew ; Benkeblia, Noureddine</creatorcontrib><description>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO
2
removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO
2
. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</description><identifier>ISSN: 2767-3200</identifier><identifier>EISSN: 2767-3200</identifier><identifier>DOI: 10.1371/journal.pclm.0000181</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agricultural commodities ; Agricultural practices ; Agricultural production ; Agroforestry ; Carbon dioxide ; Carbon dioxide removal ; Climate change ; Climate change mitigation ; Consumption ; Decarbonization ; Emissions ; Emissions control ; Environmental impact ; Farming systems ; Farms ; Feeds ; Fertilizers ; Food ; Food industry ; Food waste ; Greenhouse gases ; Harvesting ; Intensive farming ; Land use planning ; Livestock ; Livestock feeds ; Organic soils ; R&D ; Research & development ; Seafood ; Soil amendment ; Technology adoption</subject><ispartof>PLOS climate, 2023-09, Vol.2 (9), p.e0000181</ispartof><rights>2023 Almaraz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</citedby><cites>FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</cites><orcidid>0000-0001-8884-4432 ; 0000-0002-1414-0261 ; 0000-0002-1293-7808 ; 0000-0001-7786-6783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069190538/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069190538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><contributor>Benkeblia, Noureddine</contributor><creatorcontrib>Almaraz, Maya</creatorcontrib><creatorcontrib>Houlton, Benjamin Z.</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><creatorcontrib>Holzer, Iris</creatorcontrib><creatorcontrib>Zhou, Yanqiu</creatorcontrib><creatorcontrib>Rasmussen, Laura</creatorcontrib><creatorcontrib>Moberg, Emily</creatorcontrib><creatorcontrib>Manaigo, Erin</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Scarborough, Courtney</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><creatorcontrib>Ho, Melissa</creatorcontrib><creatorcontrib>Allison, Edward</creatorcontrib><creatorcontrib>Sibanda, Lindiwe</creatorcontrib><creatorcontrib>Salter, Andrew</creatorcontrib><title>Model-based scenarios for achieving net negative emissions in the food system</title><title>PLOS climate</title><description>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO
2
removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO
2
. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</description><subject>Agricultural commodities</subject><subject>Agricultural practices</subject><subject>Agricultural production</subject><subject>Agroforestry</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide removal</subject><subject>Climate change</subject><subject>Climate change mitigation</subject><subject>Consumption</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Environmental impact</subject><subject>Farming systems</subject><subject>Farms</subject><subject>Feeds</subject><subject>Fertilizers</subject><subject>Food</subject><subject>Food industry</subject><subject>Food waste</subject><subject>Greenhouse gases</subject><subject>Harvesting</subject><subject>Intensive farming</subject><subject>Land use planning</subject><subject>Livestock</subject><subject>Livestock feeds</subject><subject>Organic soils</subject><subject>R&D</subject><subject>Research & development</subject><subject>Seafood</subject><subject>Soil amendment</subject><subject>Technology adoption</subject><issn>2767-3200</issn><issn>2767-3200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkE1rwzAMhs3YYGXrP9jBsHM6O47j5DjKvqBll-1sXFtuXZK4s9JC__1c2sEEQgI9rw4PIQ-czbhQ_Gkb92kw3Wxnu37GcvGGX5FJqWpViJKx63_7LZkibjNTqrbiTE3IchkddMXKIDiKFgaTQkTqY6LGbgIcwrCmA4y512YMB6DQB8QQB6RhoOMGMhtz9Igj9PfkxpsOYXqZd-T79eVr_l4sPt8-5s-LwnLFeFHzilXKuoZZL6D2lZcrWzYeqnaV79IqZ610ljnDoVTSyYZD66VSQoEqpbgjj-e_uxR_9oCjvlhALVjd8pZJ0WSqOlM2RcQEXu9S6E06as70yd1fSp_c6Ys78QuE42WQ</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Almaraz, Maya</creator><creator>Houlton, Benjamin Z.</creator><creator>Clark, Michael</creator><creator>Holzer, Iris</creator><creator>Zhou, Yanqiu</creator><creator>Rasmussen, Laura</creator><creator>Moberg, Emily</creator><creator>Manaigo, Erin</creator><creator>Halpern, Benjamin S.</creator><creator>Scarborough, Courtney</creator><creator>Lei, Xin Gen</creator><creator>Ho, Melissa</creator><creator>Allison, Edward</creator><creator>Sibanda, Lindiwe</creator><creator>Salter, Andrew</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-8884-4432</orcidid><orcidid>https://orcid.org/0000-0002-1414-0261</orcidid><orcidid>https://orcid.org/0000-0002-1293-7808</orcidid><orcidid>https://orcid.org/0000-0001-7786-6783</orcidid></search><sort><creationdate>20230906</creationdate><title>Model-based scenarios for achieving net negative emissions in the food system</title><author>Almaraz, Maya ; Houlton, Benjamin Z. ; Clark, Michael ; Holzer, Iris ; Zhou, Yanqiu ; Rasmussen, Laura ; Moberg, Emily ; Manaigo, Erin ; Halpern, Benjamin S. ; Scarborough, Courtney ; Lei, Xin Gen ; Ho, Melissa ; Allison, Edward ; Sibanda, Lindiwe ; Salter, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural commodities</topic><topic>Agricultural practices</topic><topic>Agricultural production</topic><topic>Agroforestry</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide removal</topic><topic>Climate change</topic><topic>Climate change mitigation</topic><topic>Consumption</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Environmental impact</topic><topic>Farming systems</topic><topic>Farms</topic><topic>Feeds</topic><topic>Fertilizers</topic><topic>Food</topic><topic>Food industry</topic><topic>Food waste</topic><topic>Greenhouse gases</topic><topic>Harvesting</topic><topic>Intensive farming</topic><topic>Land use planning</topic><topic>Livestock</topic><topic>Livestock feeds</topic><topic>Organic soils</topic><topic>R&D</topic><topic>Research & development</topic><topic>Seafood</topic><topic>Soil amendment</topic><topic>Technology adoption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almaraz, Maya</creatorcontrib><creatorcontrib>Houlton, Benjamin Z.</creatorcontrib><creatorcontrib>Clark, Michael</creatorcontrib><creatorcontrib>Holzer, Iris</creatorcontrib><creatorcontrib>Zhou, Yanqiu</creatorcontrib><creatorcontrib>Rasmussen, Laura</creatorcontrib><creatorcontrib>Moberg, Emily</creatorcontrib><creatorcontrib>Manaigo, Erin</creatorcontrib><creatorcontrib>Halpern, Benjamin S.</creatorcontrib><creatorcontrib>Scarborough, Courtney</creatorcontrib><creatorcontrib>Lei, Xin Gen</creatorcontrib><creatorcontrib>Ho, Melissa</creatorcontrib><creatorcontrib>Allison, Edward</creatorcontrib><creatorcontrib>Sibanda, Lindiwe</creatorcontrib><creatorcontrib>Salter, Andrew</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>PLOS climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almaraz, Maya</au><au>Houlton, Benjamin Z.</au><au>Clark, Michael</au><au>Holzer, Iris</au><au>Zhou, Yanqiu</au><au>Rasmussen, Laura</au><au>Moberg, Emily</au><au>Manaigo, Erin</au><au>Halpern, Benjamin S.</au><au>Scarborough, Courtney</au><au>Lei, Xin Gen</au><au>Ho, Melissa</au><au>Allison, Edward</au><au>Sibanda, Lindiwe</au><au>Salter, Andrew</au><au>Benkeblia, Noureddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-based scenarios for achieving net negative emissions in the food system</atitle><jtitle>PLOS climate</jtitle><date>2023-09-06</date><risdate>2023</risdate><volume>2</volume><issue>9</issue><spage>e0000181</spage><pages>e0000181-</pages><issn>2767-3200</issn><eissn>2767-3200</eissn><abstract>Most climate mitigation scenarios point to a combination of GHG emission reductions and CO
2
removal for avoiding the most dangerous climate change impacts this century. The global food system is responsible for ~1/3 of GHG emissions and thus plays an important role in reaching emission targets. Consumers, technology innovation, industry, and agricultural practices offer various degrees of opportunity to reduce emissions and remove CO
2
. However, a question remains as to whether food system transformation can achieve net negative emissions (i.e., where GHG sinks exceed sources sector wide) and what the capacity of the different levers may be. We use a global food system model to explore the influence of consumer choice, climate-smart agro-industrial technologies, and food waste reductions for achieving net negative emissions for the year 2050. We analyze an array of scenarios under the conditions of full yield gap closures and caloric demands in a world with 10 billion people. Our results reveal a high-end capacity of 33 gigatonnes of net negative emissions per annum via complete food system transformation, which assumes full global deployment of behavioral-, management- and technology-based interventions. The most promising technologies for achieving net negative emissions include hydrogen-powered fertilizer production, livestock feeds, organic and inorganic soil amendments, agroforestry, and sustainable seafood harvesting practices. On the consumer side, adopting flexitarian diets cannot achieve full decarbonization of the food system but has the potential to increase the magnitude of net negative emissions when combined with technology scale-up. GHG reductions ascribed to a mixture of technology deployment and dietary shifts emerge for many different countries, with areas of high ruminant production and non-intensive agricultural systems showing the greatest per capita benefits. This analysis highlights potential for future food systems to achieve net negative emissions using multifaceted “cradle-to-grave” and “land-to-sea” emission reduction strategies that embrace emerging climate-smart agro-industrial technologies.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pclm.0000181</doi><orcidid>https://orcid.org/0000-0001-8884-4432</orcidid><orcidid>https://orcid.org/0000-0002-1414-0261</orcidid><orcidid>https://orcid.org/0000-0002-1293-7808</orcidid><orcidid>https://orcid.org/0000-0001-7786-6783</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2767-3200 |
ispartof | PLOS climate, 2023-09, Vol.2 (9), p.e0000181 |
issn | 2767-3200 2767-3200 |
language | eng |
recordid | cdi_proquest_journals_3069190538 |
source | ProQuest - Publicly Available Content Database |
subjects | Agricultural commodities Agricultural practices Agricultural production Agroforestry Carbon dioxide Carbon dioxide removal Climate change Climate change mitigation Consumption Decarbonization Emissions Emissions control Environmental impact Farming systems Farms Feeds Fertilizers Food Food industry Food waste Greenhouse gases Harvesting Intensive farming Land use planning Livestock Livestock feeds Organic soils R&D Research & development Seafood Soil amendment Technology adoption |
title | Model-based scenarios for achieving net negative emissions in the food system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-based%20scenarios%20for%20achieving%20net%20negative%20emissions%20in%20the%20food%20system&rft.jtitle=PLOS%20climate&rft.au=Almaraz,%20Maya&rft.date=2023-09-06&rft.volume=2&rft.issue=9&rft.spage=e0000181&rft.pages=e0000181-&rft.issn=2767-3200&rft.eissn=2767-3200&rft_id=info:doi/10.1371/journal.pclm.0000181&rft_dat=%3Cproquest_cross%3E3069190538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1701-614047cd80cf3e6f4f5bc28fe49b7015c7dcc5dc0da1e275d581e9f57737e7253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069190538&rft_id=info:pmid/&rfr_iscdi=true |