Loading…

Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph

To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first d...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ASME transactions on mechatronics 2024-06, Vol.29 (3), p.2056-2066
Main Authors: He, Wenbin, Mao, Jianxu, Li, Zhe, Wang, Yaonan, Fang, Qiu, Wu, Haotian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103
cites cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103
container_end_page 2066
container_issue 3
container_start_page 2056
container_title IEEE/ASME transactions on mechatronics
container_volume 29
creator He, Wenbin
Mao, Jianxu
Li, Zhe
Wang, Yaonan
Fang, Qiu
Wu, Haotian
description To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.
doi_str_mv 10.1109/TMECH.2023.3318373
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069616351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10281390</ieee_id><sourcerecordid>3069616351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhhujiYi-gPHQxPPiTNvd7R4VRUggJoiJt6Z0W1gCu9h2D7y9i3DwNH8y_zeZfITcIwwQoXhazN6G4wEDxgeco-Q5vyA9LAQmgOL7sssgeSIET6_JTQgbABAI2CNqpNttpJPS1rFyldGxamraODpvYpfrFZ1ps65q6w_0RQdb0m79eqj1rjJ0ZHVsvaVza5o6RN-aP_qzWtV6S9-93q9vyZXT22DvzrNPvkZvi-E4mX68T4bP08SwIosJGjCMZSYvoDSZS91yyTCVXBpgKJxElgnQuRbaaM0N5ktRytLlJpVgAIH3yePp7t43P60NUW2a1ndvBMUhKzLMeIpdi51axjcheOvU3lc77Q8KQR1Fqj-R6ihSnUV20MMJqqy1_wAmkRfAfwG6O29s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069616351</pqid></control><display><type>article</type><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><source>IEEE Xplore (Online service)</source><creator>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</creator><creatorcontrib>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</creatorcontrib><description>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3318373</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D-convolutional neural network (2-D-CNN) ; Artificial neural networks ; Coefficients ; Convolutional neural networks ; Decomposition ; Discrete wavelet transforms ; dynamic feature selection (DFSL) ; Energy distribution ; Fault detection ; Fault diagnosis ; fault identification ; Feature extraction ; feature signal graph ; Graphs ; Machinery ; Rotating machinery ; Signal reconstruction ; Signal to noise ratio ; wavelet packet ; Wavelet packets ; Wavelet transforms</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-06, Vol.29 (3), p.2056-2066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</citedby><cites>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</cites><orcidid>0000-0003-1700-6057 ; 0000-0002-0519-6458 ; 0000-0003-0597-4835 ; 0000-0003-4497-0028 ; 0000-0003-2267-5415 ; 0000-0001-9797-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10281390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Mao, Jianxu</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Fang, Qiu</creatorcontrib><creatorcontrib>Wu, Haotian</creatorcontrib><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</description><subject>2-D-convolutional neural network (2-D-CNN)</subject><subject>Artificial neural networks</subject><subject>Coefficients</subject><subject>Convolutional neural networks</subject><subject>Decomposition</subject><subject>Discrete wavelet transforms</subject><subject>dynamic feature selection (DFSL)</subject><subject>Energy distribution</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fault identification</subject><subject>Feature extraction</subject><subject>feature signal graph</subject><subject>Graphs</subject><subject>Machinery</subject><subject>Rotating machinery</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>wavelet packet</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOAjEQhhujiYi-gPHQxPPiTNvd7R4VRUggJoiJt6Z0W1gCu9h2D7y9i3DwNH8y_zeZfITcIwwQoXhazN6G4wEDxgeco-Q5vyA9LAQmgOL7sssgeSIET6_JTQgbABAI2CNqpNttpJPS1rFyldGxamraODpvYpfrFZ1ps65q6w_0RQdb0m79eqj1rjJ0ZHVsvaVza5o6RN-aP_qzWtV6S9-93q9vyZXT22DvzrNPvkZvi-E4mX68T4bP08SwIosJGjCMZSYvoDSZS91yyTCVXBpgKJxElgnQuRbaaM0N5ktRytLlJpVgAIH3yePp7t43P60NUW2a1ndvBMUhKzLMeIpdi51axjcheOvU3lc77Q8KQR1Fqj-R6ihSnUV20MMJqqy1_wAmkRfAfwG6O29s</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>He, Wenbin</creator><creator>Mao, Jianxu</creator><creator>Li, Zhe</creator><creator>Wang, Yaonan</creator><creator>Fang, Qiu</creator><creator>Wu, Haotian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1700-6057</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0003-0597-4835</orcidid><orcidid>https://orcid.org/0000-0003-4497-0028</orcidid><orcidid>https://orcid.org/0000-0003-2267-5415</orcidid><orcidid>https://orcid.org/0000-0001-9797-2081</orcidid></search><sort><creationdate>20240601</creationdate><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><author>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2-D-convolutional neural network (2-D-CNN)</topic><topic>Artificial neural networks</topic><topic>Coefficients</topic><topic>Convolutional neural networks</topic><topic>Decomposition</topic><topic>Discrete wavelet transforms</topic><topic>dynamic feature selection (DFSL)</topic><topic>Energy distribution</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fault identification</topic><topic>Feature extraction</topic><topic>feature signal graph</topic><topic>Graphs</topic><topic>Machinery</topic><topic>Rotating machinery</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>wavelet packet</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Mao, Jianxu</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Fang, Qiu</creatorcontrib><creatorcontrib>Wu, Haotian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wenbin</au><au>Mao, Jianxu</au><au>Li, Zhe</au><au>Wang, Yaonan</au><au>Fang, Qiu</au><au>Wu, Haotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>3</issue><spage>2056</spage><epage>2066</epage><pages>2056-2066</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3318373</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1700-6057</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0003-0597-4835</orcidid><orcidid>https://orcid.org/0000-0003-4497-0028</orcidid><orcidid>https://orcid.org/0000-0003-2267-5415</orcidid><orcidid>https://orcid.org/0000-0001-9797-2081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-06, Vol.29 (3), p.2056-2066
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_3069616351
source IEEE Xplore (Online service)
subjects 2-D-convolutional neural network (2-D-CNN)
Artificial neural networks
Coefficients
Convolutional neural networks
Decomposition
Discrete wavelet transforms
dynamic feature selection (DFSL)
Energy distribution
Fault detection
Fault diagnosis
fault identification
Feature extraction
feature signal graph
Graphs
Machinery
Rotating machinery
Signal reconstruction
Signal to noise ratio
wavelet packet
Wavelet packets
Wavelet transforms
title Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Identification%20of%20Rotating%20Machinery%20Based%20on%20Dynamic%20Feature%20Reconstruction%20Signal%20Graph&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=He,%20Wenbin&rft.date=2024-06-01&rft.volume=29&rft.issue=3&rft.spage=2056&rft.epage=2066&rft.pages=2056-2066&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3318373&rft_dat=%3Cproquest_cross%3E3069616351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069616351&rft_id=info:pmid/&rft_ieee_id=10281390&rfr_iscdi=true