Loading…
Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph
To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first d...
Saved in:
Published in: | IEEE/ASME transactions on mechatronics 2024-06, Vol.29 (3), p.2056-2066 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103 |
container_end_page | 2066 |
container_issue | 3 |
container_start_page | 2056 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 29 |
creator | He, Wenbin Mao, Jianxu Li, Zhe Wang, Yaonan Fang, Qiu Wu, Haotian |
description | To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding. |
doi_str_mv | 10.1109/TMECH.2023.3318373 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3069616351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10281390</ieee_id><sourcerecordid>3069616351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhhujiYi-gPHQxPPiTNvd7R4VRUggJoiJt6Z0W1gCu9h2D7y9i3DwNH8y_zeZfITcIwwQoXhazN6G4wEDxgeco-Q5vyA9LAQmgOL7sssgeSIET6_JTQgbABAI2CNqpNttpJPS1rFyldGxamraODpvYpfrFZ1ps65q6w_0RQdb0m79eqj1rjJ0ZHVsvaVza5o6RN-aP_qzWtV6S9-93q9vyZXT22DvzrNPvkZvi-E4mX68T4bP08SwIosJGjCMZSYvoDSZS91yyTCVXBpgKJxElgnQuRbaaM0N5ktRytLlJpVgAIH3yePp7t43P60NUW2a1ndvBMUhKzLMeIpdi51axjcheOvU3lc77Q8KQR1Fqj-R6ihSnUV20MMJqqy1_wAmkRfAfwG6O29s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069616351</pqid></control><display><type>article</type><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><source>IEEE Xplore (Online service)</source><creator>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</creator><creatorcontrib>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</creatorcontrib><description>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2023.3318373</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D-convolutional neural network (2-D-CNN) ; Artificial neural networks ; Coefficients ; Convolutional neural networks ; Decomposition ; Discrete wavelet transforms ; dynamic feature selection (DFSL) ; Energy distribution ; Fault detection ; Fault diagnosis ; fault identification ; Feature extraction ; feature signal graph ; Graphs ; Machinery ; Rotating machinery ; Signal reconstruction ; Signal to noise ratio ; wavelet packet ; Wavelet packets ; Wavelet transforms</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-06, Vol.29 (3), p.2056-2066</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</citedby><cites>FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</cites><orcidid>0000-0003-1700-6057 ; 0000-0002-0519-6458 ; 0000-0003-0597-4835 ; 0000-0003-4497-0028 ; 0000-0003-2267-5415 ; 0000-0001-9797-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10281390$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Mao, Jianxu</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Fang, Qiu</creatorcontrib><creatorcontrib>Wu, Haotian</creatorcontrib><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</description><subject>2-D-convolutional neural network (2-D-CNN)</subject><subject>Artificial neural networks</subject><subject>Coefficients</subject><subject>Convolutional neural networks</subject><subject>Decomposition</subject><subject>Discrete wavelet transforms</subject><subject>dynamic feature selection (DFSL)</subject><subject>Energy distribution</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fault identification</subject><subject>Feature extraction</subject><subject>feature signal graph</subject><subject>Graphs</subject><subject>Machinery</subject><subject>Rotating machinery</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>wavelet packet</subject><subject>Wavelet packets</subject><subject>Wavelet transforms</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOAjEQhhujiYi-gPHQxPPiTNvd7R4VRUggJoiJt6Z0W1gCu9h2D7y9i3DwNH8y_zeZfITcIwwQoXhazN6G4wEDxgeco-Q5vyA9LAQmgOL7sssgeSIET6_JTQgbABAI2CNqpNttpJPS1rFyldGxamraODpvYpfrFZ1ps65q6w_0RQdb0m79eqj1rjJ0ZHVsvaVza5o6RN-aP_qzWtV6S9-93q9vyZXT22DvzrNPvkZvi-E4mX68T4bP08SwIosJGjCMZSYvoDSZS91yyTCVXBpgKJxElgnQuRbaaM0N5ktRytLlJpVgAIH3yePp7t43P60NUW2a1ndvBMUhKzLMeIpdi51axjcheOvU3lc77Q8KQR1Fqj-R6ihSnUV20MMJqqy1_wAmkRfAfwG6O29s</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>He, Wenbin</creator><creator>Mao, Jianxu</creator><creator>Li, Zhe</creator><creator>Wang, Yaonan</creator><creator>Fang, Qiu</creator><creator>Wu, Haotian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1700-6057</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0003-0597-4835</orcidid><orcidid>https://orcid.org/0000-0003-4497-0028</orcidid><orcidid>https://orcid.org/0000-0003-2267-5415</orcidid><orcidid>https://orcid.org/0000-0001-9797-2081</orcidid></search><sort><creationdate>20240601</creationdate><title>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</title><author>He, Wenbin ; Mao, Jianxu ; Li, Zhe ; Wang, Yaonan ; Fang, Qiu ; Wu, Haotian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2-D-convolutional neural network (2-D-CNN)</topic><topic>Artificial neural networks</topic><topic>Coefficients</topic><topic>Convolutional neural networks</topic><topic>Decomposition</topic><topic>Discrete wavelet transforms</topic><topic>dynamic feature selection (DFSL)</topic><topic>Energy distribution</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fault identification</topic><topic>Feature extraction</topic><topic>feature signal graph</topic><topic>Graphs</topic><topic>Machinery</topic><topic>Rotating machinery</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>wavelet packet</topic><topic>Wavelet packets</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Wenbin</creatorcontrib><creatorcontrib>Mao, Jianxu</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Wang, Yaonan</creatorcontrib><creatorcontrib>Fang, Qiu</creatorcontrib><creatorcontrib>Wu, Haotian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Wenbin</au><au>Mao, Jianxu</au><au>Li, Zhe</au><au>Wang, Yaonan</au><au>Fang, Qiu</au><au>Wu, Haotian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>29</volume><issue>3</issue><spage>2056</spage><epage>2066</epage><pages>2056-2066</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To improve the performance in identifying the faults under strong noise for rotating machinery, this article presents a dynamic feature reconstruction signal graph method, which plays a key role in the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including the coefficient matrices. Then, with the originally defined two feature extraction factors maximum distribution difference (MDD) and discrete distribution difference (DDD), a dynamic feature selection method based on the L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, and enable each subsignal to take adaptive signal reconstruction. Next, the coefficient matrices of the optimal feature subbands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2-D-convolutional neural network (2-D-CNN). Experimental results verify that this method achieves superior performances than the existing methods under different noise intensities, based on the data of both the public platform of a bearing and our laboratory platform of robotic grinding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2023.3318373</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1700-6057</orcidid><orcidid>https://orcid.org/0000-0002-0519-6458</orcidid><orcidid>https://orcid.org/0000-0003-0597-4835</orcidid><orcidid>https://orcid.org/0000-0003-4497-0028</orcidid><orcidid>https://orcid.org/0000-0003-2267-5415</orcidid><orcidid>https://orcid.org/0000-0001-9797-2081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-06, Vol.29 (3), p.2056-2066 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_3069616351 |
source | IEEE Xplore (Online service) |
subjects | 2-D-convolutional neural network (2-D-CNN) Artificial neural networks Coefficients Convolutional neural networks Decomposition Discrete wavelet transforms dynamic feature selection (DFSL) Energy distribution Fault detection Fault diagnosis fault identification Feature extraction feature signal graph Graphs Machinery Rotating machinery Signal reconstruction Signal to noise ratio wavelet packet Wavelet packets Wavelet transforms |
title | Fault Identification of Rotating Machinery Based on Dynamic Feature Reconstruction Signal Graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Identification%20of%20Rotating%20Machinery%20Based%20on%20Dynamic%20Feature%20Reconstruction%20Signal%20Graph&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=He,%20Wenbin&rft.date=2024-06-01&rft.volume=29&rft.issue=3&rft.spage=2056&rft.epage=2066&rft.pages=2056-2066&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2023.3318373&rft_dat=%3Cproquest_cross%3E3069616351%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-1c0c226c790dc6f5fbb215838c0214f812640a7a4acaa3c17b4d8df7c580c0103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069616351&rft_id=info:pmid/&rft_ieee_id=10281390&rfr_iscdi=true |