Loading…
An inverse kinematic method for non-spherical wrist 6DOF robot based on reconfigured objective function
The non-spherical 6R manipulators are widely used in many fields. However, the non-spherical structure often poses challenges in the inverse kinematics problem (IKP) for such robots. To address this challenge, transforming IKP into an optimization problem is a promising solution. Nevertheless, exist...
Saved in:
Published in: | Soft computing (Berlin, Germany) Germany), 2024-04, Vol.28 (7-8), p.5937-5951 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The non-spherical 6R manipulators are widely used in many fields. However, the non-spherical structure often poses challenges in the inverse kinematics problem (IKP) for such robots. To address this challenge, transforming IKP into an optimization problem is a promising solution. Nevertheless, existing optimization methods often entail complex computations and tend to overlook the geometric characteristics of the manipulators. In this study, we introduce a novel objective function based on a disconnect-reconnect method. Initially, based on the prior geometric knowledge of the non-spherical 6 degrees of freedom (DOF) manipulators, we employ a disconnect–reconnect strategy to decouple the kinematic equations. This process yields four nonlinear re-connection conditions equations. Subsequently, we utilize this equation to formulate a novel objective function. Then, we employ the adaptive covariance matrix evolution strategy (CMA-ES) alongside an analytical method to achieve precise solutions for the IKP. The proposed method was validated on the Comau NJ-220 manipulator. The simulation results demonstrate that the proposed effectively reduces computational complexity and enhances solution efficiency while maintaining accuracy in solving. |
---|---|
ISSN: | 1432-7643 1433-7479 |
DOI: | 10.1007/s00500-023-09392-2 |