Loading…
SAM: Semi-Active Mechanism for Extensible Continuum Manipulator and Real-time Hysteresis Compensation Control Algorithm
Cable-Driven Continuum Manipulators (CDCMs) enable scar-free procedures but face limitations in workspace and control accuracy due to hysteresis. We introduce an extensible CDCM with a Semi-active Mechanism (SAM) and develop a real-time hysteresis compensation control algorithm using a Temporal Conv...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cable-Driven Continuum Manipulators (CDCMs) enable scar-free procedures but face limitations in workspace and control accuracy due to hysteresis. We introduce an extensible CDCM with a Semi-active Mechanism (SAM) and develop a real-time hysteresis compensation control algorithm using a Temporal Convolutional Network (TCN) based on data collected from fiducial markers and RGBD sensing. Performance validation shows the proposed controller significantly reduces hysteresis by up to 69.5% in random trajectory tracking test and approximately 26% in the box pointing task. The SAM mechanism enables access to various lesions without damaging surrounding tissues. The proposed controller with TCN-based compensation effectively predicts hysteresis behavior and minimizes position and joint angle errors in real-time, which has the potential to enhance surgical task performance. |
---|---|
ISSN: | 2331-8422 |