Loading…
Geometric singularities and Hodge theory
We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consid...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consider applications of this to the Hodge-Dirac operator on differential forms induced by so-called rough Riemannian metrics, which can be of only measurable coefficient in regularity, on both compact and non-compact settings. As a consequence, we show that the kernel of the associated non-smooth Hodge-Dirac operator with respect to a rough Riemannian metric remains isomorphic to smooth and singular cohomology when the underlying manifold is compact. |
---|---|
ISSN: | 2331-8422 |