Loading…
Geometric singularities and Hodge theory
We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consid...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bandara, Lashi Habib, Georges |
description | We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consider applications of this to the Hodge-Dirac operator on differential forms induced by so-called rough Riemannian metrics, which can be of only measurable coefficient in regularity, on both compact and non-compact settings. As a consequence, we show that the kernel of the associated non-smooth Hodge-Dirac operator with respect to a rough Riemannian metric remains isomorphic to smooth and singular cohomology when the underlying manifold is compact. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3074863084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074863084</sourcerecordid><originalsourceid>FETCH-proquest_journals_30748630843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcE_Nz00tKcpMVijOzEsvzUksyizJTC1WSMxLUfDIT0lPVSjJSM0vquRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjA3MTCzNjAwsTY-JUAQDDSDBa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074863084</pqid></control><display><type>article</type><title>Geometric singularities and Hodge theory</title><source>Publicly Available Content (ProQuest)</source><creator>Bandara, Lashi ; Habib, Georges</creator><creatorcontrib>Bandara, Lashi ; Habib, Georges</creatorcontrib><description>We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consider applications of this to the Hodge-Dirac operator on differential forms induced by so-called rough Riemannian metrics, which can be of only measurable coefficient in regularity, on both compact and non-compact settings. As a consequence, we show that the kernel of the associated non-smooth Hodge-Dirac operator with respect to a rough Riemannian metric remains isomorphic to smooth and singular cohomology when the underlying manifold is compact.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Homology ; Operators (mathematics)</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3074863084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Bandara, Lashi</creatorcontrib><creatorcontrib>Habib, Georges</creatorcontrib><title>Geometric singularities and Hodge theory</title><title>arXiv.org</title><description>We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consider applications of this to the Hodge-Dirac operator on differential forms induced by so-called rough Riemannian metrics, which can be of only measurable coefficient in regularity, on both compact and non-compact settings. As a consequence, we show that the kernel of the associated non-smooth Hodge-Dirac operator with respect to a rough Riemannian metric remains isomorphic to smooth and singular cohomology when the underlying manifold is compact.</description><subject>Differential equations</subject><subject>Homology</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcE_Nz00tKcpMVijOzEsvzUksyizJTC1WSMxLUfDIT0lPVSjJSM0vquRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjA3MTCzNjAwsTY-JUAQDDSDBa</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Bandara, Lashi</creator><creator>Habib, Georges</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241113</creationdate><title>Geometric singularities and Hodge theory</title><author>Bandara, Lashi ; Habib, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30748630843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Homology</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bandara, Lashi</creatorcontrib><creatorcontrib>Habib, Georges</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandara, Lashi</au><au>Habib, Georges</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geometric singularities and Hodge theory</atitle><jtitle>arXiv.org</jtitle><date>2024-11-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider smooth vector bundles over smooth manifolds equipped with non-smooth geometric data. For nilpotent differential operators acting on these bundles, we show that the kernels of induced Hodge-Dirac-type operators remain isomorphic under uniform perturbations of the geometric data. We consider applications of this to the Hodge-Dirac operator on differential forms induced by so-called rough Riemannian metrics, which can be of only measurable coefficient in regularity, on both compact and non-compact settings. As a consequence, we show that the kernel of the associated non-smooth Hodge-Dirac operator with respect to a rough Riemannian metric remains isomorphic to smooth and singular cohomology when the underlying manifold is compact.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3074863084 |
source | Publicly Available Content (ProQuest) |
subjects | Differential equations Homology Operators (mathematics) |
title | Geometric singularities and Hodge theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geometric%20singularities%20and%20Hodge%20theory&rft.jtitle=arXiv.org&rft.au=Bandara,%20Lashi&rft.date=2024-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3074863084%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30748630843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3074863084&rft_id=info:pmid/&rfr_iscdi=true |