Loading…

Randomizing Human Brain Function Representation for Brain Disease Diagnosis

Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-07, Vol.43 (7), p.2537-2546
Main Authors: Liu, Mengjun, Zhang, Huifeng, Liu, Mianxin, Chen, Dongdong, Zhuang, Zixu, Wang, Xin, Zhang, Lichi, Peng, Daihui, Wang, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Resting-state fMRI (rs-fMRI) is an effective tool for quantifying functional connectivity (FC), which plays a crucial role in exploring various brain diseases. Due to the high dimensionality of fMRI data, FC is typically computed based on the region of interest (ROI), whose parcellation relies on a pre-defined atlas. However, utilizing the brain atlas poses several challenges including 1) subjective selection bias in choosing from various brain atlases, 2) parcellation of each subject's brain with the same atlas yet disregarding individual specificity; 3) lack of interaction between brain region parcellation and downstream ROI-based FC analysis. To address these limitations, we propose a novel randomizing strategy for generating brain function representation to facilitate neural disease diagnosis. Specifically, we randomly sample brain patches, thus avoiding ROI parcellations of the brain atlas. Then, we introduce a new brain function representation framework for the sampled patches. Each patch has its function description by referring to anchor patches, as well as the position description. Furthermore, we design an adaptive-selection-assisted Transformer network to optimize and integrate the function representations of all sampled patches within each brain for neural disease diagnosis. To validate our framework, we conduct extensive evaluations on three datasets, and the experimental results establish the effectiveness and generality of our proposed method, offering a promising avenue for advancing neural disease diagnosis beyond the confines of traditional atlas-based methods. Our code is available at https://github.com/mjliu2020/RandomFR .
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2024.3368064