Loading…
Mid-infrared wide-field nanoscopy
Mid-infrared (MIR) spectroscopy is widely recognized as a powerful, non-destructive method for chemical analysis. However, its utility is constrained by a micrometre-scale spatial resolution imposed by the long-wavelength MIR diffraction limit. This limitation has been recently overcome by MIR photo...
Saved in:
Published in: | Nature photonics 2024-07, Vol.18 (7), p.738-743 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mid-infrared (MIR) spectroscopy is widely recognized as a powerful, non-destructive method for chemical analysis. However, its utility is constrained by a micrometre-scale spatial resolution imposed by the long-wavelength MIR diffraction limit. This limitation has been recently overcome by MIR photothermal imaging, which detects photothermal effects induced in the vicinity of MIR absorbers using a visible-light microscope. Despite its promise, the full potential of its spatial resolving power has not been realized. Here we present an optimal implementation of wide-field MIR photothermal imaging to achieve high spatial resolution. This was accomplished by employing single-objective synthetic-aperture quantitative phase imaging with synchronized subnanosecond MIR and visible light sources, effectively suppressing the resolution-degradation effect caused by photothermal heat diffusion. We demonstrated far-field MIR spectroscopic imaging with a spatial resolution limited by the visible diffraction, down to 120 or 175 nm in terms of the Nyquist–Shannon sampling theorem or full-width at half-maximum of the point spread function, respectively, in the MIR region of 3.12–3.85 μm (2,600–3,200 cm
−1
). This technique—through the use of a shorter visible wavelength and/or a higher objective numerical aperture—holds the potential to achieve a spatial resolution of less than 100 nm, thus paving the way for MIR wide-field nanoscopy.
Wide-field mid-infrared photothermal imaging is developed to supress the resolution degradation caused by photo-thermal heat diffusion. By employing a single-objective synthetic-aperture imaging with synchronized subnanosecond mid-infrared and visible light sources, spatial resolution of 120 nm is obtained. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-024-01423-0 |