Loading…

Degradation of Anthraquinone dye wastewater by sodium percarbonate with CoO heterogeneous activation

BACKGROUND Anthraquinone dyes have an anthraquinone structure as their nucleus, with one or more substituents forming different organic dyes. Anthraquinone dyes have a complex structure that allows them to exist stably in water environment, but also makes them more toxic than azo dyes. This results...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2024-08, Vol.99 (8), p.1821-1836
Main Authors: Fan, Haoyu, Xia, Yanzhao, Sun, Cuizhen, Liu, Rupeng, Chen, Feiyong, Li, Meng, Zhu, Weichen, Yang, Xinpeng, Zhang, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND Anthraquinone dyes have an anthraquinone structure as their nucleus, with one or more substituents forming different organic dyes. Anthraquinone dyes have a complex structure that allows them to exist stably in water environment, but also makes them more toxic than azo dyes. This results in varying degrees of harm to both humans and the environment as a result of residual dyes in the water or on the material’ surface. Sodium percarbonate (SPC) is a highly promising oxidant due to its green end product. Therefore, in this study, the catalytic performance and kinetic study of cobalt oxide (CoO) on SPC under different conditions were systematically investigated using RB19 as the target pollutant. The Box–Behnken Design (BBD) model was used to model the degradation of RB19 by CoO/SPC system, which gives the basis for practical application. The types of reactive oxygen species that effectively degrade RB19 and the potential degradation mechanism of the CoO/SPC system were revealed. At the same time, the CoO/SPC system was evaluated in terms of its practicality. RESULTS In this work, the activation of SPC using CoO towards reactive blue 19 (RB19) degradation was explored. Experimental results showed that nearly 93.8% of RB19 could be removed within 30 min using 1 mmol L−1 SPC and 30 mg L−1 CoO. The three‐factor interaction effects of SPC concentration, CoO dosage and initial pH were investigated. The BBD model was set up to obtain the optimum working conditions of 1.039 mmol L−1 SPC, 33.35 mg L−1 CoO and the initial pH of 7.82, which gave a degradation rate of 95.372%. Additionally, it was confirmed that the solubility of Co2+ is consistently O2•‐ (51.11%) >1O2 (37.21%) >•OH (5.27%) > SPC (3.33%) >CoO (0.09%). It has been confirmed that CoO activates SPC through electron
ISSN:0268-2575
1097-4660
DOI:10.1002/jctb.7684