Loading…
Quantum related-key differential cryptanalysis
Quantum computation models have profoundly impacted cryptanalysis. Differential cryptanalysis is one of the most fundamental methods in cryptanalysis of block ciphers, and one of the variations of this attack is related-key differential cryptanalysis. In this paper, quantum related-key differential...
Saved in:
Published in: | Quantum information processing 2024-07, Vol.23 (7), Article 269 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum computation models have profoundly impacted cryptanalysis. Differential cryptanalysis is one of the most fundamental methods in cryptanalysis of block ciphers, and one of the variations of this attack is related-key differential cryptanalysis. In this paper, quantum related-key differential cryptanalysis is implemented in two main stages of classical version. We employ Bernstein–Vazirani algorithm to find related-key differential characteristics in the first stage. Building on this basis, the second stage combines quantum maximum algorithm and quantum counting algorithm to recover correct key pair by quantum random access memory model. Compared to classical related-key differential cryptanalysis, the first stage achieves exponential acceleration, while the second stage accelerates at
O
(
K
), where
K
2
represents the number of candidate key pairs. |
---|---|
ISSN: | 1573-1332 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-024-04472-0 |