Loading…
Physical phenomena for zero temperature limit
Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation i...
Saved in:
Published in: | Journal of the Korean Physical Society 2024-07, Vol.85 (2), p.129-137 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13 |
container_end_page | 137 |
container_issue | 2 |
container_start_page | 129 |
container_title | Journal of the Korean Physical Society |
container_volume | 85 |
creator | Kim, Heetae Yu, Soon Jae |
description | Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions. |
doi_str_mv | 10.1007/s40042-024-01115-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079871266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079871266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1BFojaM306JVrwkJCigtpxkzGa1eWBni-Xr8RIkOqop5tw7o0PIJYNrBmBukgSQnAKXFBhjiuojsmCl0dQqLo_JAoSRVForT8lZSptMC2H0gtDX9T61td8W4xr7ocPeF2GIxRfGoZiwGzH6aRex2LZdO52Tk-C3CS9-55K839-9rR7p88vD0-r2mdYcYKKVqRrNah9KVRvLlVK6Qo8QhOWee18F1QBqVQqZV43IH0PFG1sGxXiNTCzJ1dw7xuFzh2lym2EX-3zSCTClNYxrnSk-U3UcUooY3Bjbzse9Y-AOWtysxWUt7keLO4TEHEoZ7j8w_lX_k_oG9-NkPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079871266</pqid></control><display><type>article</type><title>Physical phenomena for zero temperature limit</title><source>Springer Link</source><creator>Kim, Heetae ; Yu, Soon Jae</creator><creatorcontrib>Kim, Heetae ; Yu, Soon Jae</creatorcontrib><description>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</description><identifier>ISSN: 0374-4884</identifier><identifier>EISSN: 1976-8524</identifier><identifier>DOI: 10.1007/s40042-024-01115-6</identifier><language>eng</language><publisher>Seoul: The Korean Physical Society</publisher><subject>Background noise ; Black body radiation ; Black holes ; Evaporation rate ; Mathematical and Computational Physics ; Original Paper - Fluids ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma and Phenomenology ; Radiation ; Radiation tolerance ; Surface resistance ; Temperature ; Theoretical ; Thermal diffusion ; Thermal expansion ; Thermal noise ; Thermal radiation ; Thermal resistance ; Zero point energy</subject><ispartof>Journal of the Korean Physical Society, 2024-07, Vol.85 (2), p.129-137</ispartof><rights>The Korean Physical Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kim, Heetae</creatorcontrib><creatorcontrib>Yu, Soon Jae</creatorcontrib><title>Physical phenomena for zero temperature limit</title><title>Journal of the Korean Physical Society</title><addtitle>J. Korean Phys. Soc</addtitle><description>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</description><subject>Background noise</subject><subject>Black body radiation</subject><subject>Black holes</subject><subject>Evaporation rate</subject><subject>Mathematical and Computational Physics</subject><subject>Original Paper - Fluids</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma and Phenomenology</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Surface resistance</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thermal diffusion</subject><subject>Thermal expansion</subject><subject>Thermal noise</subject><subject>Thermal radiation</subject><subject>Thermal resistance</subject><subject>Zero point energy</subject><issn>0374-4884</issn><issn>1976-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1BFojaM306JVrwkJCigtpxkzGa1eWBni-Xr8RIkOqop5tw7o0PIJYNrBmBukgSQnAKXFBhjiuojsmCl0dQqLo_JAoSRVForT8lZSptMC2H0gtDX9T61td8W4xr7ocPeF2GIxRfGoZiwGzH6aRex2LZdO52Tk-C3CS9-55K839-9rR7p88vD0-r2mdYcYKKVqRrNah9KVRvLlVK6Qo8QhOWee18F1QBqVQqZV43IH0PFG1sGxXiNTCzJ1dw7xuFzh2lym2EX-3zSCTClNYxrnSk-U3UcUooY3Bjbzse9Y-AOWtysxWUt7keLO4TEHEoZ7j8w_lX_k_oG9-NkPg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, Heetae</creator><creator>Yu, Soon Jae</creator><general>The Korean Physical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Physical phenomena for zero temperature limit</title><author>Kim, Heetae ; Yu, Soon Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Background noise</topic><topic>Black body radiation</topic><topic>Black holes</topic><topic>Evaporation rate</topic><topic>Mathematical and Computational Physics</topic><topic>Original Paper - Fluids</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma and Phenomenology</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Surface resistance</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thermal diffusion</topic><topic>Thermal expansion</topic><topic>Thermal noise</topic><topic>Thermal radiation</topic><topic>Thermal resistance</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heetae</creatorcontrib><creatorcontrib>Yu, Soon Jae</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Korean Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heetae</au><au>Yu, Soon Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical phenomena for zero temperature limit</atitle><jtitle>Journal of the Korean Physical Society</jtitle><stitle>J. Korean Phys. Soc</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>85</volume><issue>2</issue><spage>129</spage><epage>137</epage><pages>129-137</pages><issn>0374-4884</issn><eissn>1976-8524</eissn><abstract>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</abstract><cop>Seoul</cop><pub>The Korean Physical Society</pub><doi>10.1007/s40042-024-01115-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-4884 |
ispartof | Journal of the Korean Physical Society, 2024-07, Vol.85 (2), p.129-137 |
issn | 0374-4884 1976-8524 |
language | eng |
recordid | cdi_proquest_journals_3079871266 |
source | Springer Link |
subjects | Background noise Black body radiation Black holes Evaporation rate Mathematical and Computational Physics Original Paper - Fluids Particle and Nuclear Physics Physics Physics and Astronomy Plasma and Phenomenology Radiation Radiation tolerance Surface resistance Temperature Theoretical Thermal diffusion Thermal expansion Thermal noise Thermal radiation Thermal resistance Zero point energy |
title | Physical phenomena for zero temperature limit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20phenomena%20for%20zero%20temperature%20limit&rft.jtitle=Journal%20of%20the%20Korean%20Physical%20Society&rft.au=Kim,%20Heetae&rft.date=2024-07-01&rft.volume=85&rft.issue=2&rft.spage=129&rft.epage=137&rft.pages=129-137&rft.issn=0374-4884&rft.eissn=1976-8524&rft_id=info:doi/10.1007/s40042-024-01115-6&rft_dat=%3Cproquest_cross%3E3079871266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079871266&rft_id=info:pmid/&rfr_iscdi=true |