Loading…

Physical phenomena for zero temperature limit

Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Korean Physical Society 2024-07, Vol.85 (2), p.129-137
Main Authors: Kim, Heetae, Yu, Soon Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13
container_end_page 137
container_issue 2
container_start_page 129
container_title Journal of the Korean Physical Society
container_volume 85
creator Kim, Heetae
Yu, Soon Jae
description Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.
doi_str_mv 10.1007/s40042-024-01115-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3079871266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3079871266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1BFojaM306JVrwkJCigtpxkzGa1eWBni-Xr8RIkOqop5tw7o0PIJYNrBmBukgSQnAKXFBhjiuojsmCl0dQqLo_JAoSRVForT8lZSptMC2H0gtDX9T61td8W4xr7ocPeF2GIxRfGoZiwGzH6aRex2LZdO52Tk-C3CS9-55K839-9rR7p88vD0-r2mdYcYKKVqRrNah9KVRvLlVK6Qo8QhOWee18F1QBqVQqZV43IH0PFG1sGxXiNTCzJ1dw7xuFzh2lym2EX-3zSCTClNYxrnSk-U3UcUooY3Bjbzse9Y-AOWtysxWUt7keLO4TEHEoZ7j8w_lX_k_oG9-NkPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3079871266</pqid></control><display><type>article</type><title>Physical phenomena for zero temperature limit</title><source>Springer Link</source><creator>Kim, Heetae ; Yu, Soon Jae</creator><creatorcontrib>Kim, Heetae ; Yu, Soon Jae</creatorcontrib><description>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</description><identifier>ISSN: 0374-4884</identifier><identifier>EISSN: 1976-8524</identifier><identifier>DOI: 10.1007/s40042-024-01115-6</identifier><language>eng</language><publisher>Seoul: The Korean Physical Society</publisher><subject>Background noise ; Black body radiation ; Black holes ; Evaporation rate ; Mathematical and Computational Physics ; Original Paper - Fluids ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Plasma and Phenomenology ; Radiation ; Radiation tolerance ; Surface resistance ; Temperature ; Theoretical ; Thermal diffusion ; Thermal expansion ; Thermal noise ; Thermal radiation ; Thermal resistance ; Zero point energy</subject><ispartof>Journal of the Korean Physical Society, 2024-07, Vol.85 (2), p.129-137</ispartof><rights>The Korean Physical Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kim, Heetae</creatorcontrib><creatorcontrib>Yu, Soon Jae</creatorcontrib><title>Physical phenomena for zero temperature limit</title><title>Journal of the Korean Physical Society</title><addtitle>J. Korean Phys. Soc</addtitle><description>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</description><subject>Background noise</subject><subject>Black body radiation</subject><subject>Black holes</subject><subject>Evaporation rate</subject><subject>Mathematical and Computational Physics</subject><subject>Original Paper - Fluids</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma and Phenomenology</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Surface resistance</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Thermal diffusion</subject><subject>Thermal expansion</subject><subject>Thermal noise</subject><subject>Thermal radiation</subject><subject>Thermal resistance</subject><subject>Zero point energy</subject><issn>0374-4884</issn><issn>1976-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1BFojaM306JVrwkJCigtpxkzGa1eWBni-Xr8RIkOqop5tw7o0PIJYNrBmBukgSQnAKXFBhjiuojsmCl0dQqLo_JAoSRVForT8lZSptMC2H0gtDX9T61td8W4xr7ocPeF2GIxRfGoZiwGzH6aRex2LZdO52Tk-C3CS9-55K839-9rR7p88vD0-r2mdYcYKKVqRrNah9KVRvLlVK6Qo8QhOWee18F1QBqVQqZV43IH0PFG1sGxXiNTCzJ1dw7xuFzh2lym2EX-3zSCTClNYxrnSk-U3UcUooY3Bjbzse9Y-AOWtysxWUt7keLO4TEHEoZ7j8w_lX_k_oG9-NkPg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kim, Heetae</creator><creator>Yu, Soon Jae</creator><general>The Korean Physical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240701</creationdate><title>Physical phenomena for zero temperature limit</title><author>Kim, Heetae ; Yu, Soon Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Background noise</topic><topic>Black body radiation</topic><topic>Black holes</topic><topic>Evaporation rate</topic><topic>Mathematical and Computational Physics</topic><topic>Original Paper - Fluids</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma and Phenomenology</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Surface resistance</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Thermal diffusion</topic><topic>Thermal expansion</topic><topic>Thermal noise</topic><topic>Thermal radiation</topic><topic>Thermal resistance</topic><topic>Zero point energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heetae</creatorcontrib><creatorcontrib>Yu, Soon Jae</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Korean Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heetae</au><au>Yu, Soon Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical phenomena for zero temperature limit</atitle><jtitle>Journal of the Korean Physical Society</jtitle><stitle>J. Korean Phys. Soc</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>85</volume><issue>2</issue><spage>129</spage><epage>137</epage><pages>129-137</pages><issn>0374-4884</issn><eissn>1976-8524</eissn><abstract>Physical phenomena at the zero temperature limit are studied in the field of accelerator physics. Experimental techniques have been developed to achieve temperatures approaching 0 K. As the universe expands, its background temperature continuously decreases. The energy density of thermal radiation is depicted as a function of temperature across different dimensions. In superconducting cavities, the surface resistance reduces to residual resistance at 0 K. The resistivity of various material types is presented in terms of temperature, and the thermal expansion of solid materials is also illustrated in terms of dimension. Blackbody radiation ceases at 0 K, along with thermal diffusion and thermal noise. However, quantum diffusion and zero-point noise persist at 0 K. With the exception of helium, all gases solidify at this temperature. Despite being at 0 K, zero-point energy still exists, and fundamental forces remain active. Moreover, black holes are expected to evaporate at 0 K, and the evaporation rate of black holes is calculated under these conditions.</abstract><cop>Seoul</cop><pub>The Korean Physical Society</pub><doi>10.1007/s40042-024-01115-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0374-4884
ispartof Journal of the Korean Physical Society, 2024-07, Vol.85 (2), p.129-137
issn 0374-4884
1976-8524
language eng
recordid cdi_proquest_journals_3079871266
source Springer Link
subjects Background noise
Black body radiation
Black holes
Evaporation rate
Mathematical and Computational Physics
Original Paper - Fluids
Particle and Nuclear Physics
Physics
Physics and Astronomy
Plasma and Phenomenology
Radiation
Radiation tolerance
Surface resistance
Temperature
Theoretical
Thermal diffusion
Thermal expansion
Thermal noise
Thermal radiation
Thermal resistance
Zero point energy
title Physical phenomena for zero temperature limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20phenomena%20for%20zero%20temperature%20limit&rft.jtitle=Journal%20of%20the%20Korean%20Physical%20Society&rft.au=Kim,%20Heetae&rft.date=2024-07-01&rft.volume=85&rft.issue=2&rft.spage=129&rft.epage=137&rft.pages=129-137&rft.issn=0374-4884&rft.eissn=1976-8524&rft_id=info:doi/10.1007/s40042-024-01115-6&rft_dat=%3Cproquest_cross%3E3079871266%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-b7bd61caf95c7825556beae0f382a2aabf5d0e65934556d31110b2d89f512ce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3079871266&rft_id=info:pmid/&rfr_iscdi=true