Loading…
Axisymmetric Flows with Swirl for Euler and Navier–Stokes Equations
We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler an...
Saved in:
Published in: | Journal of nonlinear science 2024-10, Vol.34 (5), Article 86 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the incompressible axisymmetric Navier–Stokes equations with swirl as an idealized model for tornado-like flows. Assuming an infinite vortex line which interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and axisymmetric Navier–Stokes equations. We are particularly interested in the connection of the two problems in the zero-viscosity limit. First, we construct a class of explicit stationary self-similar solutions for the axisymmetric Euler equations. Second, we consider the possibility of discontinuous solutions and prove that there do not exist self-similar stationary Euler solutions with slip discontinuity. This nonexistence result is extended to a class of flows where there is mass input or mass loss through the vortex core. Third, we consider solutions of the Euler equations as zero-viscosity limits of solutions to Navier–Stokes. Using techniques from the theory of Riemann problems for conservation laws, we prove that, under certain assumptions, stationary self-similar solutions of the axisymmetric Navier–Stokes equations converge to stationary self-similar solutions of the axisymmetric Euler equations as
ν
→
0
. This allows to characterize the type of Euler solutions that arise via viscosity limits. |
---|---|
ISSN: | 0938-8974 1432-1467 |
DOI: | 10.1007/s00332-024-10064-0 |