Loading…

Silicone rubber/benzoxazine resin‐based nanocomposites: A study on compatibility and thermal stability

In this study, blends of silicone rubber (SR) and benzoxazine (BZ) were prepared accompanied by ethylene propylene diene monomer grafted with maleic anhydride (EPDM‐g‐MA) as the compatibilizing agent. A total of 3 phr MA grafted EPDM showed the most favorable grafting efficiency and relatively lower...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2024-08, Vol.64 (8), p.3952-3970
Main Authors: Faghihi, Jalal, Arefazar, Ahmad, Khonakdar, Hossein Ali, Tohidian, Mahdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, blends of silicone rubber (SR) and benzoxazine (BZ) were prepared accompanied by ethylene propylene diene monomer grafted with maleic anhydride (EPDM‐g‐MA) as the compatibilizing agent. A total of 3 phr MA grafted EPDM showed the most favorable grafting efficiency and relatively lower gel content. Results showed that 8 phr (EPDM‐g‐MA) was the optimal compatibilizer content in the 85/15 SR/BZ blend, which was used for further studies. Morphological studies proved that the greatest reduction in the dispersed droplet size (from 1.32 to 0.23 μm) occurred at this optimal compatibilizer loading (8 phr). The lowest difference between the glass transition temperatures of the blend components was observed at the 8 phr compatibilizer content, which was confirmed by DMTA. The mechanical and curing characteristics of compatibilized and uncompatibilized blends were also studied. The results evinced that the tensile strength of the compatibilized samples was higher than that of the uncompatibilized blends. Thermal studies on the 85/15 SR/BZ blend and nanocomposites containing 1, 3, and 5 phr polyhedral oligomeric silsesquioxane (POSS) nanoparticles revealed that the thermal stability of nanocomposites containing 1 and 3 phr POSS was superior to that of the nanocomposite with 5 phr POSS. This figure represents a schematic of process of silicone rubber/benzoxazine resin‐based nanocomposites.
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.26824