Loading…

Uniform Metric Graphs

We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All pa...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of geometric analysis 2024-10, Vol.34 (10), Article 306
Main Author: Herron, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All parameters are absolute constants.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-024-01735-1