Loading…
Uniform Metric Graphs
We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All pa...
Saved in:
Published in: | The Journal of geometric analysis 2024-10, Vol.34 (10), Article 306 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All parameters are absolute constants. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01735-1 |