Loading…

Improved cyclic stability of LiNi0.8Mn0.1Co0.1O2 cathode enabled by a novel CEI forming additive

The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials. Electrolyte optimization is an effective approach to suppress such an adver...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Energy 2024-08, Vol.18 (4), p.535-544
Main Authors: Shadike, Zulipiya, Chen, Yiming, Liu, Lin, Cai, Xinyin, Shen, Shuiyun, Zhang, Junliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials. Electrolyte optimization is an effective approach to suppress such an adverse side reaction, thereby enhancing the electrochemical properties. Herein, a novel boron-based film forming additive, tris(2,2,2-trifluoroethyl) borate (TTFEB), has been introduced to regulate the interphasial chemistry of LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) cathode to improve its long-term cyclability and rate properties. The results of multi-model diagnostic study reveal that formation lithium fluoride (LiF)-rich and boron (B) containing cathode electrolyte interphase (CEI) not only stabilizes cathode surface, but also prevents electrolyte decomposition. Moreover, homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI, reducing the interphasial resistance. Remarkably, the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8% after 350 electrochemical cycles at a 1 C current rate, which is significantly higher than that of the cell cycled in the conventional electrolyte (59.7%). These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry.
ISSN:2095-1701
2095-1698
DOI:10.1007/s11708-024-0953-5