Loading…
A method for developing and calibrating optimization techniques for oil production management strategy applications
The hydrocarbon extraction process is complex and involves numerous design variables and mitigating risk. Numerous time-consuming simulations are required to maximize objective functions such as NPV from a particular field while contemplating a significant representation of uncertainty scenarios and...
Saved in:
Published in: | Computational geosciences 2024-08, Vol.28 (4), p.587-604 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hydrocarbon extraction process is complex and involves numerous design variables and mitigating risk. Numerous time-consuming simulations are required to maximize objective functions such as NPV from a particular field while contemplating a significant representation of uncertainty scenarios and various production strategies. Production strategies searches may result in a high-dimensional search space which can yield sub-optimal reservoir economical exploration. As a solution, appropriate optimization algorithms selection and tuning may provide good solutions with lesser simulations. This paper presents a methodology to calibrate, develop, and select optimization algorithms for oil production strategy applications while quantifying the dimension and optimum location effects. Global optimum location altered the best method to be selected. It presents a novel algorithm (ASLHC) and a modification of the Nelder-Mead method (NMNS) to improve its high dimensionality performance. Performances of six pre-calibrated techniques were compared using novel normalized mathematical functions. Optimizations were limited to a 500 evaluation functions computational budget. The PSO, ASLHC, NMNS, and IDLHC were selected and implemented to perform production strategy improvements regarding two parameterizations of the reservoir management variables for a real reservoir model with restricted platform. Results showed the implemented algorithms successfully improved NPV by at least 8% at each of the 24 real-case optimizations. After upscaling the selected techniques for a 115 variable parameterization, the NMNS and IDLHC demonstrated good resilience against local convergence and each technique kept improving during all iterations of the process. An optimization method recommendation chart is presented based on the computational budget of the application. |
---|---|
ISSN: | 1420-0597 1573-1499 |
DOI: | 10.1007/s10596-024-10282-1 |