Loading…

The density of planar sets avoiding unit distances

By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdős that the density of any measurable planar set avoiding unit distances is less than 1/4. Our argument implies the upper bound of 0.2470.

Saved in:
Bibliographic Details
Published in:Mathematical programming 2024-09, Vol.207 (1-2), p.303-327
Main Authors: Ambrus, Gergely, Csiszárik, Adrián, Matolcsi, Máté, Varga, Dániel, Zsámboki, Pál
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:By improving upon previous estimates on a problem posed by L. Moser, we prove a conjecture of Erdős that the density of any measurable planar set avoiding unit distances is less than 1/4. Our argument implies the upper bound of 0.2470.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-023-02012-9