Loading…
Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces
In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space Rn(wheren⩾4)$\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space Hn(wheren⩾2)$\mathbb {H}^n\,\, (\hbo...
Saved in:
Published in: | Mathematische Nachrichten 2024-08, Vol.297 (8), p.3003-3023 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space Rn(wheren⩾4)$\mathbb {R}^n\,\,(\hbox{ where }n \geqslant 4)$ and real hyperbolic space Hn(wheren⩾2)$\mathbb {H}^n\,\, (\hbox{where }n \geqslant 2)$. We work in framework of critical spaces such as on weak‐Lorentz space Ln2,∞(Rn)$L^{\frac{n}{2},\infty }(\mathbb {R}^n)$ to obtain the results for the Keller–Segel system on Rn$\mathbb {R}^n$ and on Lp2(Hn)$L^{\frac{p}{2}}(\mathbb {H}^n)$ for n |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202300311 |