Loading…
Symbolic dynamics of joint brain states during dyadic coordination
We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of the evolution of...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of the evolution of brain states in two or more individuals performing a task together. These symbolic dynamics can be analyzed to reveal aspects of the dynamics of joint brain states that are related to coordination or other interactive behaviors. We apply this approach to simultaneous electroencephalographic (EEG) data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (Uncoupled, Leader-Follower, and Mutual) to explore the neural mechanisms of multi-person motor coordination. Our results reveal that the dyads exhibit mostly the same joint symbols in different interaction conditions - the most important differences are reflected in the symbolic dynamics. Recurrence analysis shows that interaction influences the dwell time in specific joint symbols and the structure of joint symbol sequences (motif length). In synchronization, increasing feedback promotes stability with longer dwell times and motif length. In syncopation, Leader-Follower interactions enhance stability (increase dwell time and motif length), but Mutual feedback dramatically reduces stability. Network analysis reveals distinct topological changes with task and feedback. In synchronization, stronger coupling stabilizes a few states restricting the pattern of flow between states, preserving a core-periphery structure of the joint brain states. In syncopation, a more distributed flow amongst a larger set of joint brain states reduces the dominance of core joint brain states. |
---|---|
ISSN: | 2331-8422 |