Loading…

Spatial distribution of Azospirillum brasilense in 2D flow cell: Effect of irrigation and inoculation regimes

Recent advances in the use of plant growth‐promoting bacteria (PGPB) have highlighted their potential to significantly enhance crop yield and plant health. In desert areas with sandy soil, employing drip irrigation systems to inoculate PGPB serves as an efficient method that saves both time and labo...

Full description

Saved in:
Bibliographic Details
Published in:European journal of soil science 2024-07, Vol.75 (4), p.n/a
Main Authors: Chen, Fengxian, Ronen, Zeev, Arye, Gilboa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advances in the use of plant growth‐promoting bacteria (PGPB) have highlighted their potential to significantly enhance crop yield and plant health. In desert areas with sandy soil, employing drip irrigation systems to inoculate PGPB serves as an efficient method that saves both time and labour. This study examined the absorption, transport and spatial distribution of two strains of Azospirillum brasilense (Sp7 and Cd) under two‐dimension (2D) unsaturated transient water flow. We used sand as a substitute for sandy soil and evaluated bacterial surface characteristics, adsorption isotherms and transport under different irrigation and inoculation regimes. The research determined that, owing to its smaller size and lower adsorption, A. brasilense Cd exhibited enhanced mobility and occupied an inoculated area 33% larger than that of A. brasilense Sp7. Moreover, subsurface drip irrigation (SSDI) exhibited a 29% higher inoculation area than surface drip irrigation (SDI). The sequence of introducing PGPB suspension and irrigation water impacted the distribution, particularly for A. brasilense Sp7. The attachment/detachment numerical model adequately described the 2D bacterial distribution (R2 ranged from 0.75 to 0.99), providing a useful tool for predicting bacterial distribution in soils and optimizing agricultural practices to enhance crop productivity. Overall, smaller bacteria, SSDI inoculation and inoculation before irrigation could enhance the extent of inoculation. This study provides novel insights into optimizing PGPB inoculation strategies in agricultural settings, highlighting the importance of considering bacterial physical properties, irrigation techniques and inoculation sequences to improve PGPB distribution within the rhizosphere. Smaller bacterial cell size, SSDI inoculation and inoculation before irrigation can enhance inoculation extent of plant growth‐promoting bacteria (PGPB) in sand.
ISSN:1351-0754
1365-2389
DOI:10.1111/ejss.13552