Loading…

Entanglement of Disjoint Intervals in Dual-Unitary Circuits: Exact Results

The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator. Namely, it is expected to show qualitatively different behaviours depending on whether the underlying microscopic dynamics is chaotic or integrable. So fa...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Foligno, Alessandro, Bertini, Bruno
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growth of the entanglement between a disjoint subsystem and its complement after a quantum quench is regarded as a dynamical chaos indicator. Namely, it is expected to show qualitatively different behaviours depending on whether the underlying microscopic dynamics is chaotic or integrable. So far, however, this could only be verified in the context of conformal field theories. Here we present an exact confirmation of this expectation in a class of interacting microscopic Floquet systems on the lattice, i.e., dual-unitary circuits. These systems can either have zero or a super extensive number of conserved charges: the latter case is achieved via fine-tuning. We show that, for almost all dual unitary circuits the asymptotic entanglement dynamics agrees with what is expected for chaotic systems. On the other hand, if we require the systems to have conserved charges, we find that the entanglement displays the qualitatively different behaviour expected for integrable systems. Interestingly, despite having many conserved charges, charge-conserving dual-unitary circuits are in general not Yang-Baxter integrable.
ISSN:2331-8422