Loading…

Detection of Alzheimer’s disease using pre-trained deep learning models through transfer learning: a review

Due to the progress in image processing and Artificial Intelligence (AI), it is now possible to develop automated tool for the early detection and diagnosis of Alzheimer’s Disease (AD). Handcrafted techniques developed so far, lack generality, leading to the development of deep learning (DL) techniq...

Full description

Saved in:
Bibliographic Details
Published in:The Artificial intelligence review 2024-09, Vol.57 (10), p.275, Article 275
Main Authors: Heenaye-Mamode Khan, Maleika, Reesaul, Pushtika, Auzine, Muhammad Muzzammil, Taylor, Amelia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the progress in image processing and Artificial Intelligence (AI), it is now possible to develop automated tool for the early detection and diagnosis of Alzheimer’s Disease (AD). Handcrafted techniques developed so far, lack generality, leading to the development of deep learning (DL) techniques, which can extract more relevant features. To cater for the limited labelled datasets and requirement in terms of high computational power, transfer learning models can be adopted as a baseline. In recent years, considerable research efforts have been devoted to developing machine learning-based techniques for AD detection and classification using medical imaging data. This survey paper comprehensively reviews the existing literature on various methodologies and approaches employed for AD detection and classification, with a focus on neuroimaging techniques such as structural MRI, PET, and fMRI. The main objective of this survey is to analyse the different transfer learning models that can be used for the deployment of deep convolution neural network for AD detection and classification. The phases involved in the development namely image capture, pre-processing, feature extraction and selection are also discussed in the view of shedding light on the different phases and challenges that need to be addressed. The research perspectives may provide research directions on the development of automated applications for AD detection and classification.
ISSN:1573-7462
0269-2821
1573-7462
DOI:10.1007/s10462-024-10914-z