Loading…
Optimizing the Weather Research and Forecasting Model with OpenMP Offload and Codee
Currently, the Weather Research and Forecasting model (WRF) utilizes shared memory (OpenMP) and distributed memory (MPI) parallelisms. To take advantage of GPU resources on the Perlmutter supercomputer at NERSC, we port parts of the computationally expensive routines of the Fast Spectral Bin Microph...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Currently, the Weather Research and Forecasting model (WRF) utilizes shared memory (OpenMP) and distributed memory (MPI) parallelisms. To take advantage of GPU resources on the Perlmutter supercomputer at NERSC, we port parts of the computationally expensive routines of the Fast Spectral Bin Microphysics (FSBM) microphysical scheme to NVIDIA GPUs using OpenMP device offloading directives. To facilitate this process, we explore a workflow for optimization which uses both runtime profilers and a static code inspection tool Codee to refactor the subroutine. We observe a 2.08x overall speedup for the CONUS-12km thunderstorm test case. |
---|---|
ISSN: | 2331-8422 |