Loading…
Boosted regression for predicting CPU utilization in the cloud with periodicity
Predicting CPU usage is crucial to cloud resource management. Precise CPU prediction, however, is a tough challenge due to the variable and dynamic nature of CPUs. In this paper, we introduce TrAdaBoost.WLP, a novel regression transfer boosting method that employs Long Short-Term Memory (LSTM) netwo...
Saved in:
Published in: | The Journal of supercomputing 2024-12, Vol.80 (18), p.26036-26060 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting CPU usage is crucial to cloud resource management. Precise CPU prediction, however, is a tough challenge due to the variable and dynamic nature of CPUs. In this paper, we introduce TrAdaBoost.WLP, a novel regression transfer boosting method that employs Long Short-Term Memory (LSTM) networks for CPU consumption prediction. Concretely, a dedicated Periodicity-aware LSTM (PA-LSTM) model is specifically developed to take into account the use of periodically repeated patterns in time series data while making predictions. To adjust for variations in CPU demands, multiple PA-LSTMs are trained and concatenated in TrAdaBoost.WLP using a boosting mechanism. TrAdaBoost.WLP and benchmarks have been thoroughly evaluated on two datasets: 160 Microsoft Azure VMs and 8 Google cluster traces. The experimental results show that TrAdaBoost.WLP can produce promising performance, improving by 32.4% and 59.3% in terms of mean squared error compared to the standard Probabilistic LSTM and ARIMA. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-024-06451-9 |