Loading…
Bilayer surrogate brain response under various blast loading conditions
Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in...
Saved in:
Published in: | Shock waves 2024, Vol.34 (4), p.357-367 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Variations in the experimental constraints applied within blast simulations can result in dramatically different measured biomechanical responses. Ultimately, this limits the comparison of data between research groups and leads to further inquisitions about the “correct” biomechanics experienced in blast environments. A novel bilayer surrogate brain was exposed to blast waves generated from advanced blast simulators (ABSs) where detonation source, boundary conditions, and ABS geometry were varied. The surrogate was comprised of Sylgard 527 (1:1) as a gray matter simulant and Sylgard 527 (1:1.2) as a white matter simulant. The intracranial pressure response of this surrogate brain was measured in the frontal region under primary blast loading while suspended in a polyurethane spherical shell with 5 mm thickness and filled with water to represent the cerebrospinal fluid. Outcomes of this work discuss considerations for future experimental designs and aim to address sources of variability confounding interpretation of biomechanical responses. |
---|---|
ISSN: | 0938-1287 1432-2153 |
DOI: | 10.1007/s00193-024-01158-5 |