Loading…

Structural Design of SiCp/A356 Brake Discs Based on Multi-field Coupling and Material Characteristics

The structural design of the brake disc of urban rail trains, especially the design of the heat dissipation rib structure, affects the heat dissipation performance of the brake disc. Unreasonable design can lead to poor heat dissipation performance and generate energy consumption caused by large air...

Full description

Saved in:
Bibliographic Details
Published in:Applied composite materials 2024-10, Vol.31 (5), p.1515-1546
Main Authors: Song, Pilin, Yang, Zhiyong, Xue, Mengfan, Zang, Jiajun, Sun, Mengcheng, Ye, Shanshan, Sun, Huade, Li, Peizhen, Li, Zhiqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structural design of the brake disc of urban rail trains, especially the design of the heat dissipation rib structure, affects the heat dissipation performance of the brake disc. Unreasonable design can lead to poor heat dissipation performance and generate energy consumption caused by large air-pumping resistance. However, the current structural design method for brake discs does not consider material characteristics and continues with materials such as steel and iron. There is no long-term service performance testing applicable to brake disc service conditions for lightweight and high-strength materials such as aluminum matrix composites. In addition, there is no comprehensive and systematic analysis of the structural design of cooling ribs. Therefore, a structure of SiCp/A356 brake discs for urban rail trains was designed in this work. Different from the previous design method, long-term performance testing of materials was conducted first, and then the heat dissipation performance and energy loss performance of different cooling rib structures were systematically analyzed to select the appropriate cooling rib structure. Based on long-term performance testing results, cooling rib optimization, and material forming process, a new brake disc structure was designed. The thermal-fluid–solid multi-field coupling simulation was conducted on the new structure brake disc under emergency braking and full round-trip conditions, and bench tests were conducted to verify the reliability of the simulation. Based on comprehensive simulation and bench test results, the new structure SiCp/A356 brake disc meets the established operating conditions. This design method considers material properties, multi-field coupling simulation, and engineering practice, which can a provide reference for the design of other brake discs and has high engineering application value.
ISSN:0929-189X
1573-4897
DOI:10.1007/s10443-024-10248-7