Impact of recent floods on river morphology of Upper Krishna River: a decadal analysis using remote sensing approach

Alluvial rivers are dynamic landscapes on the earth’s surface that evolve with time. While many studies have examined the immediate effects of floods on river channels, there is a lack of research that investigates the longer-term evolution of river morphology following such events. The present stud...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2024-10, Vol.83 (19), p.563, Article 563
Main Authors: Choudhary, Preetam, Azhoni, Adani, Devatha, C. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alluvial rivers are dynamic landscapes on the earth’s surface that evolve with time. While many studies have examined the immediate effects of floods on river channels, there is a lack of research that investigates the longer-term evolution of river morphology following such events. The present study was carried out on the Upper Krishna River which flows between the southern part of Maharashtra and the northern part of Karnataka states in India for 375 Km. The morphological parameters were analyzed for three decades (1991–2021) and the year 2019 with the highest flood level was also considered for change analysis. The assessment was done for change in active channel area, mean width, bank line migration, sinuosity index, and erosion-accretion. The land use classification was also analyzed for the study period to understand the exposure to future floods. The spatial data was retrieved from different satellite missions and analyzed with the help of Remote Sensing (RS) and Geographical Information System (GIS). The river was divided into seven segments (R1, R2, R3, R4, R5, R6, and R7) and bank lines were digitised manually to minimise possible errors. The results show that during the study period, the river channel has been modified in terms of active channel area expansion in the R1, R5, R6, and R7, and erosion was found the dominating process while the left bank was more erosive than the right bank of the river. The built-up area was seen going through a major expansion than any other land use class. The discharge and sediment data confirm the flood years (1994, 2005, 2006, and 2019) which accelerated the morphological activity in the river segment. The results of the study provide new insights related to short-term morphological changes in the Upper Krishna River and can be used by policymakers and managers to carry out future development plans and river training work at affected sites.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-024-11850-5