Loading…
A Universal Deep Learning Framework for Materials X-ray Absorption Spectra
X-ray absorption spectroscopy (XAS) is a powerful characterization technique for probing the local chemical environment of absorbing atoms. However, analyzing XAS data presents significant challenges, often requiring extensive, computationally intensive simulations, as well as significant domain exp...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | X-ray absorption spectroscopy (XAS) is a powerful characterization technique for probing the local chemical environment of absorbing atoms. However, analyzing XAS data presents significant challenges, often requiring extensive, computationally intensive simulations, as well as significant domain expertise. These limitations hinder the development of fast, robust XAS analysis pipelines that are essential in high-throughput studies and for autonomous experimentation. We address these challenges with OmniXAS, a framework that contains a suite of transfer learning approaches for XAS prediction, each contributing to improved accuracy and efficiency, as demonstrated on K-edge spectra database covering eight 3d transition metals (Ti-Cu). The OmniXAS framework is built upon three distinct strategies. First, we use M3GNet to derive latent representations of the local chemical environment of absorption sites as input for XAS prediction, achieving up to order-of-magnitude improvements over conventional featurization techniques. Second, we employ a hierarchical transfer learning strategy, training a universal multi-task model across elements before fine-tuning for element-specific predictions. Models based on this cascaded approach after element-wise fine-tuning outperform element-specific models by up to 69%. Third, we implement cross-fidelity transfer learning, adapting a universal model to predict spectra generated by simulation of a different fidelity with a higher computational cost. This approach improves prediction accuracy by up to 11% over models trained on the target fidelity alone. Our approach boosts the throughput of XAS modeling by orders of magnitude versus first-principles simulations and is extendable to XAS prediction for a broader range of elements. This transfer learning framework is generalizable to enhance deep-learning models that target other properties in materials research. |
---|---|
ISSN: | 2331-8422 |