Loading…
Geochemical Behaviour and Influencing Factors of Salt-Forming Elements in Lithium-Rich Salt Lake Region: A Case Study from the Nalenggele River Basin, Qaidam Basin
To deepen the comprehension of the geochemical behaviour of salt-forming elements (K, Li, B, Ca, Mg, Sr) and distribution patterns in the primary lithium-rich salt lake region of Qaidam Basin, 31 river and lake surface sediments from various hydrogeological settings spanning high mountain to termina...
Saved in:
Published in: | Aquatic geochemistry 2024-09, Vol.30 (3), p.179-199 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To deepen the comprehension of the geochemical behaviour of salt-forming elements (K, Li, B, Ca, Mg, Sr) and distribution patterns in the primary lithium-rich salt lake region of Qaidam Basin, 31 river and lake surface sediments from various hydrogeological settings spanning high mountain to terminal salt lake regions were gathered from the Nalenggele River, the primary feeder river of the lithium-rich salt lakes. Through sequential extraction procedure, we identified notable variances in the chemical speciation of elements across various hydrological environments. Excluding elements bound to the residual fraction, all other chemical speciation content of salt-forming elements show distinct regional variations, suggesting a predominant influence of evaporation and hydrodynamic and the inherent chemical properties of elements are also very important in determining their chemical speciation distribution characteristics. Meanwhile, we have found that in addition to being absorbed and fixed by secondary clay minerals, Li bound to Fe–Mn oxides may also play a crucial role in Li isotope fractionation from the river to the terminal salt lake brine and the precipitation of evaporation salt minerals could influence the B isotope fractionation to a certain extent. Furthermore, The Li and B lost to sediments during the migration process have potential utility and there is scope for enhanced exploitation in the future. Therefore, the results obtained from the sequential extraction procedure of sediments evidently serve as a valuable method for understanding the geochemical behaviour of salt-forming elements in the epigenetic environment. |
---|---|
ISSN: | 1380-6165 1573-1421 |
DOI: | 10.1007/s10498-024-09432-9 |