Loading…
Probabilistically Input-to-State Stable Stochastic Model Predictive Control
Employing model predictive control to systems with unbounded, stochastic disturbances poses the challenge of guaranteeing safety, i.e., repeated feasibility and stability of the closed-loop system. Especially, there are no strict repeated feasibility guarantees for standard stochastic MPC formulatio...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Employing model predictive control to systems with unbounded, stochastic disturbances poses the challenge of guaranteeing safety, i.e., repeated feasibility and stability of the closed-loop system. Especially, there are no strict repeated feasibility guarantees for standard stochastic MPC formulations. Thus, traditional stability proofs are not straightforwardly applicable. We exploit the concept of input-to-state stability in probability and outline how it can be used to provide stability guarantees, circumventing the requirement for strict repeated feasibility guarantees. Loss of feasibility is captured by a back-up controller, which is explicitly taken into account in the stability analysis. We illustrate our findings using a numeric example. |
---|---|
ISSN: | 2331-8422 |