Loading…
Cusp types of arithmetic hyperbolic manifolds
We establish necessary and sufficient conditions for determining when a flat manifold can occur as a cusp cross-section within a given commensurability class of arithmetic hyperbolic manifolds of simplest type. This reduces the problem of identifying which commensurability classes of arithmetic hype...
Saved in:
Published in: | arXiv.org 2024-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We establish necessary and sufficient conditions for determining when a flat manifold can occur as a cusp cross-section within a given commensurability class of arithmetic hyperbolic manifolds of simplest type. This reduces the problem of identifying which commensurability classes of arithmetic hyperbolic manifolds can contain a specific flat manifold as a cusp cross-section to a question involving rational representations of the flat manifold's holonomy group. As applications, we prove that a flat manifold \(M\) with a holonomy group of odd order appears as a cusp cross-section in every commensurability class of arithmetic hyperbolic manifolds if and only if \(b_1(M)\geq 3\). We also provide examples of flat manifolds that arise as cusp cross-sections in a unique commensurability class of arithmetic hyperbolic manifolds and exhibit examples of pairs of flat manifolds that can never appear as cusp cross-sections within the same commensurability class. |
---|---|
ISSN: | 2331-8422 |