Loading…
Accelerating Drug Discovery in AutoDock-GPU with Tensor Cores
In drug discovery, molecular docking aims at characterizing the binding of a drug-like molecule to a macromolecule. AutoDock-GPU, a state-of-the-art docking software, estimates the geometrical conformation of a docked ligand-protein complex by minimizing a scoring function. Our profiling results ind...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In drug discovery, molecular docking aims at characterizing the binding of a drug-like molecule to a macromolecule. AutoDock-GPU, a state-of-the-art docking software, estimates the geometrical conformation of a docked ligand-protein complex by minimizing a scoring function. Our profiling results indicate that the current reduction operation that is heavily used in the scoring function is sub-optimal. Thus, we developed a method to accelerate the sum reduction of four-element vectors using matrix operations on NVIDIA Tensor Cores. We integrated the new reduction operation into AutoDock-GPU and evaluated it on multiple chemical complexes on three GPUs. Our results show that our method for reduction operation is 4-7 times faster than the AutoDock-GPU baseline. We also evaluated the impact of our method on the overall simulation time in the real-world docking simulation and achieved a 27% improvement on the average docking time. |
---|---|
ISSN: | 2331-8422 |